US009471384B2

[]
a2 United States Patent (10) Patent No.: US 9,471,384 B2
Messerli 45) Date of Patent: Oct. 18, 2016
(54) METHOD AND SYSTEM FOR UTILIZING 2008/0163206 Al 7/2008 Nair

SPARE CLOUD RESOURCES 2009/0276771 Al1* 11/2009 Nickolov et al. 717/177

2010/0223385 Al 9/2010 Gulley
. . 2011/0099267 A1* 4/2011 Suri et al. .ccoooooovcvverann. 709/224

(75) Inventor: Antony Joel Messerli, San Antonio, 5011/0185063 Al 7/2011 Head
TX (US) 2011/0185064 Al* 7/2011 Head et al. 709/226
2011/0208908 Al* 82011 Chou etal. . 711/112
(73) Assignee: Rackspace US, Inc., San Antonio, TX 2011/0314465 Al* 12/2011 Smith et al.c.coovnnn. 718/1
(US) 2013/0042003 Al* 2/2013 Franco et al. 709/226
2013/0054426 Al* 2/2013 Rowland et al. 705/27.2
. . . . 2013/0061220 Al* 3/2013 Gnanasambandam et al. .. 718/1
(*) Notice: Subject to any disclaimer, the term of this 2013/0091335 Al* 4/2013 Mulcahy et al. 711/163
patent is extended or adjusted under 35 2013/0185729 Al* 7/2013 Vasic et al. 718/104
U.S.C. 154(b) by 682 days. 2013/0232486 Al* 9/2013 Chenetal. ...ccoocoovnrn..n.. 718/1
2013/0238780 Al* 9/2013 Devarakonda et al. 709/224

(21) Appl. No.: 13/422,135

) OTHER PUBLICATIONS
(22) Filed: Mar. 16, 2012
Wolski et al., “Predicting the CPU Availability of Time-shared Unix
(65) Prior Publication Data Systems on the Computation Grid”, 1999, IEEE, pp. 105-112.*

International Search Report and Written Opinion issued for PCT/
US 2013/0247034 A1 Sep. 19, 2013 US2013/030469 dated Jul. 2, 2013, 10 pages.

(51) Imt.CL ¥ o :
GOGF 9/455 (2006.01) cited by examiner
GOGF 9/50 (2006.01) Primary Examiner — Kenneth Tan
v 2
(52) ICJPSC CL GOGF 9/5038 (2013.01); GOGF 9/45533 (74) Attorney, Agent, or Firm — Haynes and Boone, LLP
(2013.01); GOGF 9/505 (2013.01) (57) ABSTRACT
(58) Field of Classification Search
None A cloud computing system including a computing device

configured to run virtual machine instances is disclosed. The

See application file for complete search history. computing device includes a hypervisor program for man-

(56) References Cited aging the virtual machine instances. A customer virtual
machine instance is run by the hypervisor program on the
U.S. PATENT DOCUMENTS computing device, and a grid virtual machine instance is run
by the hypervisor program on the computing device. The
7,644,161 Bl 1; 2010 Gﬁl;pnfir , grid virtual machine instance is configured to run only when
200 4%205003’(5);% ?1 N flg /58(1)42‘ gant;te e 666'15'9/751087§ a resource of the computing device is not being utilized by
"""""""""" 709/224 the customer virtual machine instance.
2005/0050545 Al 3/2005 Moakley
2005/0081208 Al 4/2005 Gargya 20 Claims, 12 Drawing Sheets
USER
DEVICE
102
NET]YSRK CLOUD COMPUTING SYSTEM 110
" /
[saas 112a | [Paas 1120 | [1eas 112¢ |

SERVICE ENDPOINTS 112 DATA STORE 150

INTERNAL NETWORK 114/
VIRTUAL NETWORK 116

PRoxweATEiVii_:!-/

SYSTEM CONTROLLER

| SERVICE
140
l | |] | | |
CLOUD CONTROLLER| |GLOUD CONTROLLER| |CLOUD CONTROLLER| [CLOUD CONTROLLER| [CLOUD CONTROLLER|
1202 120b 120c A20d 1200
I [I [1 11 [T

CLOUD SERVICE CLOUD SERVICE CLOUD SERVICE CLOUD SERVICE CLOUD SERVICE
130a 130b 130¢ 130d 130

US 9,471,384 B2

Sheet 1 of 12

Oct. 18, 2016

U.S. Patent

m 301 POtE 50¢1 qoer 20%L
! 301AN3S ANO10 301AY3S ANOTO 30IAY3S ANOTO 301AY3S ANOTO 30IAY3S ANOTO
; 30z1 (147 50z qozk 20Z1
" YITIOUINOD ANOTO| [¥ITIOMINOD ANOTD| [H3TIOHLINOD ANOTO| [H3ITIOHINOD ANOTO| [¥ITIOHULNOD GNOTO
)
; (173
: 30IANIS IOVSSAN
!
: 091
: — YIATIOULNOD WILSAS
: _ 8IT AVMILVO/IAXOYUd
; i1 HHOMLIN TVNLYIA
“ / FEE HOMLIN TYNYILNI
; 051 JHOLSviva ZLE SINIOJANT 30IAY3S
; _ 3ZIt see| _ qZIT seed _ _ BZIl Sees
- vor
IT W3LSAS ONILNAWOD ano1o MHOMLIN
oL
301A3a
L 3UNOId xasn

US 9,471,384 B2

Sheet 2 of 12

Oct. 18, 2016

U.S. Patent

00¢

¢ 3dNOI4
0Lz G0C YHOML3IN NOH4/0L
/ 'y
_ _
|
|
_U D R B aiaiatalat >
1
| | o
- u-e$€Z INJWNOYIANT ONILYH3dO
T U-eZeZ YANIVINOD TVvII901
0€Z HOSIAYIdAH ’1%4

»

FOVAHILNI HHOMLIN

j

v —
a1z 4% s_%_mm_s_
30IA3A AHOWAN [* > YOSSIO0Ud 31avav3y ¥3LNdWOD

:

u-eQze

S3AVINIA LN LNO/LNdNI

US 9,471,384 B2

Sheet 3 of 12

Oct. 18, 2016

€ J-UNOI4

|22 ¥334ng| 02Z€ ¥OSS300ud ‘LSNI |

U.S. Patent

aore 507€ qo1€ B0IE
el zZ ver z 173% z 1211
[INIWNOMIANE | | | 4 INGWNOMIANT | [| 4 [INJWNOXIANG | | | & | NSWNOXIANT
ONILYYIO ||| ONLUWHIO ||| ONLLVYAAO ||| ONILYYIO
fa— Py f— A f— P f—
ZEL ¥ANIVANOO | (D ZEL YANIVINOO | | D ZELHANIVINOD ||§ ZET Y3NIVANOD
m m m
— [} — w — wn —
vEr 2 vEr @ el @ ¥er
INJWNOMIANT [||| === INJWNONIANE | [| 30 LNTWNOXIANT | | | LNIWNOMIANI
ONILVY3do |||g ONILYY3dO |]|[18 ONILYHIdO || |1 ONILY¥3dO
o o (]
CEL MANIVINOD || ZET ¥ANIVINOD | | ZEVMINIVINOO | | ZET YaANIVINOD
c = =
1738 u ver i ¥ei o 111
INIWNOMIANT | | | [INIWNOMIANT | || T INTWNONIANS | | | T | NTJIWNOHIANT
ONLWHIHO || |3 ONILYH3dO || |1 ONILYHIdO ||| ONILYY3dO
N N N
ZETHWANIVINOD | [— ZET YANIVINOD | — ZET MIANIVINOD | [— ZET W3ANIVINOD
F A A A
oI e Lm “ prTT __‘ :
cie _ INAW313 “ ' vie '
! ONILNOY YHOMIIN | HOLINOW ¥aLSN1o, !
\ mmm e) AN \
iy b e ' g '
1 BIEAMLSIORY ¥ITIOHINOD |
B RS R T T E ¥3LSN10

US 9,471,384 B2

Sheet 4 of 12

Oct. 18, 2016

U.S. Patent

vor

By 34NOId

-~

|
.

SY3SN JIgand

P R e L L LT g Iy

©

I 300al14d

171572
H¥ILNOY TYNLYIA

F4%4
dOHA/SNa

0Ly JAON MHYOML3IN

0g¥ 3AON OIand

N 437
WA O11end

A

N vey
WA JLVAIEd

t 1

(344 [£47
VO WA NdA

02¥ 3AON J1LVAId

907 NVIA

ov
SH3ASN JLVARYd

US 9,471,384 B2

Sheet 5 of 12

Oct. 18, 2016

U.S. Patent

ay IHNOI
09v 657 acp
9NILNOY WA d31S3N0FY |« NdA
EILEL 24 VILNVLSNI

Isp
LNA JLVARID

sy S5v vsv
JOadg LINGNS/NVIA [« 1INGNS/NVIA |«
31VILINVLISNI NOISSY AdLLN3AI

(312
HIATIOHLNOD
HHOMLIN

AJILN3A!

st =

JONVLSNI NA
183No3d

US 9,471,384 B2

Sheet 6 of 12

Oct. 18, 2016

U.S. Patent

P L L L R A A
~

-

’

eg 3dNOid

0SS
Y3HSITaNd 103d1a

qaovs
HIWNSNOD Jid0L

B0bS
HIWNSNOD JIdOL

SHIHIOM

B0LS
JONVHOX3 LO3Ia

1soHy-oido] Aoy

Q| abessaiy Aoy

[[[11
§1§ 3N3NO
T T TT1

[T T T 11
~H §1§3N3n0
TIT 1T
Q015
aido] :Asy JONVHOX3 O1dO1
TTTTTTT]
§1§ 3N3ano
Tt 1111
»

R

0S HIAYIS AOVSSIN

/

Z0S 3AON JOVSSIAN

lllllllllllllllllllllllll

0tS
HINWNSNOD LO3dId

0cs
H3HSINgNd J1dOL

SHIAMOANI

4/ 00S

B

US 9,471,384 B2

Sheet 7 of 12

Oct. 18, 2016

U.S. Patent

0gs
HIWNSNOD LO3Ha

(1749
d3HSINANd OI1d0L

296

0gS
HINNSNOD LO3HIA

P PR S

0zs
d3HSI1aNd JIdo1

fe
995 S 34NOIL
R ___ E0IS 0
05¢ ! JONVHOXI 1031)L _Sis 3N3N0
Y3HSENd 193¥Ia |
aors "
HIANSNOD DIdOL '\ S TCERENRD)
—— ! £86
e0pS 4 G018
YINNSNOD DIdoL [JONVHOX3 OIdOL
o \\ 515 3N3NO \
SHINHOM N%/
60S H3AMIS IOVYSSIN / 205 JAON ADVSSIN
995 4¢ 38NSI4
296
PR A 298 B015 _ T
055 lL.\ JONVHOX3 10341d 31§ 3N3NO
H3HSITgNd 1O3xid "
qovs "
— ' v9g
eops v/ qols
Y3IWNSNOD OIdOL [JONYHOIX3 DIdOL
B EECEET |
SHINIOM £9g

v/

S0S MIAYIS IOVSSIW / 20§ IAON IDVYSSIAN

US 9,471,384 B2

Sheet 8 of 12

Oct. 18, 2016

U.S. Patent

¥29 S3A0ON 31NdWOD

919

0979 '89/9 SY3LISNTO

9 34N9OI4

HINYOM
- 31NdNOD
1
— 829 woons ovil || B 069 JYO1S viva
29 SIAON ILNdNOD HIINAIHOS I W
T 0v9 3¥OLs 103rgo |™
919 09 Y3IOVYNVW
HINHOM 31NdWOD
|| 31NdWOD / APl 622
- / > 3
929 OAS J9VSSIN 2|
099 8 — 3 3|3
Y3ITIOHLINOD T #29 ¥OSS3ID0¥d > <o
779 MHOMLIN < | b— N 0z
ZI8 ST700d 30¥N0S3Y 028 3 1oMINOD | 15
31NdWOD e)
5
\ 729 Idv
ﬁ 059 Y3 TTOHYLINOD LT YHOMLIN TYNLHIA
“ JINNTOA | PLF MHOMLIN TYNYILINI
a \ FE9 00ud ST | | »
< 22 SR =~
NOM 0% 3
H3 b
a‘ JNNTOA HIOVNVIW HLNV

P59 ¥3IAINOYd
ANNTOA

4/ 009

US 9,471,384 B2

Sheet 9 of 12

Oct. 18, 2016

U.S. Patent

9.9
HIHNHOM
3LNdWOD

3 47)

(2447

9l

029 ¥3IOVNVYIN
31NdNOJ
144}
‘012
099
AIATIOULNOD
AHOMLAN
059 ¥3T10¥LINOD
JNNTOA

2349N914
79 OAS IOVII
0¥9 340LS 103rg0
3
| - »
9z a 662
> —
062 w Z62
— ‘IIIII
029 ¥3TTOY1INOD v0. o 202
31NAWNOD _m
y
80, |90L

0g9
HIOVNVIN HLNY

4/ 004

US 9,471,384 B2

Sheet 10 of 12

Oct. 18, 2016

U.S. Patent

01z
el

u-e 08 |ﬁ u-ezog
SINA AId9 SINA HIWOLSND
018 Idv 0€¢ HOSINY3AdAH
A
A
0L8 IdV

908 I TTOULNOD ADIAYIAS QRO

808 IdV

8 3dNoOIld

Z18 SIN3ITO

l/ 008

US 9,471,384 B2

Sheet 11 of 12

Oct. 18, 2016

U.S. Patent

6 34NOId

3o1A9p Bundwos ayj uo sulydoew jenuiA pub e uny

[806

ON

SOA é,POZI|IN 93IN0SaYy

906

auIyoeW |ENUIA J8WO0ISND 8y} Aq pazInn
Buteq si somap Bunndwoo ay) Jo sainosal B saylaym sulwieeg [N 06

8oiAep Bunndwiod e uo sUIYOBW [BNUIA JOWOISND B Uny

006 \V

US 9,471,384 B2

Sheet 12 of 12

Oct. 18, 2016

U.S. Patent

syseiqns jo Ayjeanid
3y} JO U0 $S8201d 0} Sa2IA9p Bunndwod Jo }as Jsii} dY) Ul SJIASP
Buindwiod yoes uo Hujuuns sulyoew fenpia pub ayy Bugonsu)

syseigns jo Ajljesnid e ojul jsenbal Yiom Sy} apIAIg

PloYsaly} B mojaq s10)oe} peo| Jawoisho
yum soojaep Buiindwoo Jo jas)siiy e aonpoid 0} saanap Buiindwos
Jo Ayjeinid ay} Jo yoea jo J0}oe} peo| JOWO)SNI ay) dulwexy

saonep bupndwod
10 Ayjeinid ayj Jo yoro uo 10joB}) PEO| JOWO]SNI B JUIULIBQ

T —— 9001

1senbal oM e sAl1908)Y

S$90IASD
Bunndwos jo Ayjeanid e jo yoea uo suiyoew jenpia pub e uny

)

0l 34noid

US 9,471,384 B2

1

METHOD AND SYSTEM FOR UTILIZING
SPARE CLOUD RESOURCES

BACKGROUND

The present disclosure relates generally to cloud comput-
ing, and more particularly to utilizing spare resources of a
cloud computing system.

Cloud computing services can provide computational
capacity, data access, networking/routing and storage ser-
vices via a large pool of shared resources operated by a cloud
computing provider. Because the computing resources are
delivered over a network, cloud computing is location-
independent computing, with all resources being provided to
end-users on demand with control of the physical resources
separated from control of the computing resources.

Originally the term cloud came from a diagram that
contained a cloud-like shape to contain the services that
afforded computing power that was harnessed to get work
done. Much like the electrical power we receive each day,
cloud computing is a model for enabling access to a shared
collection of computing resources—networks for transfer,
servers for storage, and applications or services for com-
pleting work. More specifically, the term “cloud computing”
describes a consumption and delivery model for IT services
based on the Internet, and it typically involves over-the-
Internet provisioning of dynamically scalable and often
virtualized resources. This frequently takes the form of
web-based tools or applications that users can access and use
through a web browser as if it was a program installed
locally on their own computer. Details are abstracted from
consumers, who no longer have need for expertise in, or
control over, the technology infrastructure “in the cloud”
that supports them. Most cloud computing infrastructures
consist of services delivered through common centers and
built on servers. Clouds often appear as single points of
access for consumers’ computing needs, and do not require
end-user knowledge of the physical location and configu-
ration of the system that delivers the services.

The utility model of cloud computing is useful because
many of the computers in place in data centers today are
underutilized in computing power and networking band-
width. People may briefly need a large amount of computing
capacity to complete a computation for example, but may
not need the computing power once the computation is done.
The cloud computing utility model provides computing
resources on an on-demand basis with the flexibility to bring
it up or down through automation or with little intervention.

As a result of the utility model of cloud computing, there
are a number of aspects of cloud-based systems that can
present challenges to existing application infrastructure.
First, clouds should enable self-service, so that users can
provision servers and networks with little human interven-
tion. Second, network access is necessary. Because compu-
tational resources are delivered over the network, the indi-
vidual service endpoints need to be network-addressable
over standard protocols and through standardized mecha-
nisms. Third, multi-tenancy. Clouds are designed to serve
multiple consumers according to demand, and it is important
that resources be shared fairly and that individual users not
suffer performance degradation. Fourth, elasticity. Clouds
are designed for rapid creation and destruction of computing
resources, typically based upon virtual containers. Provi-
sioning these different types of resources must be rapid and
scale up or down based on need. Further, the cloud itself as
well as applications that use cloud computing resources
must be prepared for impermanent, fungible resources;

10

15

20

25

30

35

40

45

50

55

60

65

2

application or cloud state must be explicitly managed
because there is no guaranteed permanence of the infrastruc-
ture. Fifth, clouds typically provide metered or measured
service—like utilities that are paid for by the hour, clouds
should optimize resource use and control it for the level of
service or type of servers such as storage or processing.

Cloud computing offers different service models depend-
ing on the capabilities a consumer may require, including
SaaS, PaaS, and laaS-style clouds. SaaS (Software as a
Service) clouds provide the users the ability to use software
over the network and on a distributed basis. SaaS clouds
typically do not expose any of the underlying cloud infra-
structure to the user. PaaS (Platform as a Service) clouds
provide users the ability to deploy applications through a
programming language or tools supported by the cloud
platform provider. Users interact with the cloud through
standardized APIs, but the actual cloud mechanisms are
abstracted away. Finally, IaaS (Infrastructure as a Service)
clouds provide computer resources that mimic physical
resources, such as computer instances, network connections,
and storage devices. The actual scaling of the instances may
be hidden from the developer, but users are required to
control the scaling infrastructure.

One way in which different cloud computing systems may
differ from each other is in how they deal with control of the
underlying hardware and privacy of data. The different
approaches are sometimes referred to a “public clouds,”
“private clouds,” “hybrid clouds,” and “multi-vendor
clouds.” A public cloud has an infrastructure that is available
to the general public or a large industry group and is likely
owned by a cloud services company. A private cloud oper-
ates for a single organization, but can be managed on-
premise or off-premise. A hybrid cloud can be a deployment
model, as a composition of both public and private clouds,
or a hybrid model for cloud computing may involve both
virtual and physical servers. A multi-vendor cloud is a
hybrid cloud that may involve multiple public clouds, mul-
tiple private clouds, or some mixture.

Because the flow of services provided by the cloud is not
directly under the control of the cloud computing provider,
cloud computing requires the rapid and dynamic creation
and destruction of computational units, frequently realized
as virtualized resources. Maintaining the reliable flow and
delivery of dynamically changing computational resources
on top of a pool of limited and less-reliable physical servers
provides unique challenges. Accordingly, it is desirable to
provide a better-functioning cloud computing system with
superior operational capabilities.

In particular, a cloud system that more efficiently uses
spare processing, storage and network resources is desirable.
A cloud system is composed of server, storage and network
resources that have associated operational costs such as
power, bandwidth, and co-location charges. These costs are
incurred regardless of whether the processing, storage and
network resources of the equipment are completely utilized
or not. Accordingly, a system and method that utilizes spare
resources of the cloud system to complete computational
tasks would be desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view illustrating an external view of
a cloud computing system.

FIG. 2 is a schematic view illustrating an information
processing system as used in various embodiments.

FIG. 3 is a virtual machine management system as used
in various embodiments.

US 9,471,384 B2

3

FIG. 4a is a diagram showing types of network access
available to virtual machines in a cloud computing system
according to various embodiments.

FIG. 44 is a flowchart showing the establishment of a
VLAN for a project according to various embodiments.

FIG. 5a shows a message service system according to
various embodiments.

FIG. 55 is a diagram showing how a directed message is
sent using the message service according to various embodi-
ments.

FIG. 5¢ is a diagram showing how a broadcast message is
sent using the message service according to various embodi-
ments.

FIG. 6 shows laaS-style computational cloud service
according to various embodiments.

FIG. 7 shows an instantiating and launching process for
virtual resources according to various embodiments.

FIG. 8 shows a system for utilizing of spare cloud
resources according to various embodiments.

FIG. 9 is a flowchart showing a method for utilizing spare
resources in a cloud computing system according to various
embodiments.

FIG. 10 is a flowchart showing a method for managing
grid virtual machines on a plurality of computing devices
according to various embodiments.

SUMMARY OF THE INVENTION

In one embodiment, a cloud computing system includes a
computing device configured to run virtual machine
instances. The computing device includes a hypervisor pro-
gram for managing the virtual machine instances. A cus-
tomer virtual machine instance is run by the hypervisor
program on the computing device, and a grid virtual
machine instance is run by the hypervisor program on the
computing device. The grid virtual machine instance is
configured to run only when a resource of the computing
device is not being utilized by the customer virtual machine
instance.

In another embodiment, a method for utilizing spare
resources in a cloud computing system including a comput-
ing device configured to run virtual machine instances,
includes miming a customer virtual machine instance on the
computing device. The method further includes determining
whether a resource of the computing device is being utilized
by the customer virtual machine. The method further
includes based on the result of the determining step, selec-
tively running a grid virtual machine instance on the com-
puting device if the resource is not being utilized by the
customer virtual machine instance.

In another embodiment, a method for utilizing spare
resources in a cloud computing system including a plurality
of computing devices includes running a grid virtual
machine instance on each of the plurality of computing
devices. The method further includes receiving a work
request. The method further includes determining a cus-
tomer load factor on each of the plurality of computing
devices. The method also includes examining the customer
load factor of each of the plurality of computing devices to
produce a first set of computing devices with customer load
factors below a threshold. The method also includes dividing
the work request into a plurality of subtasks. The method
further includes instructing the grid virtual machine instance
running on each computing device in the first set of com-
puting devices to process one of the plurality of subtasks.

DETAILED DESCRIPTION

The following disclosure has reference to computing
services delivered on top of a cloud architecture.

10

15

20

25

30

35

40

45

50

55

60

65

4

Referring now to FIG. 1, an external view of one embodi-
ment of a cloud computing system 110 is illustrated. The
cloud computing system 110 includes a user device 102
connected to a network 104 such as, for example, a Trans-
port Control Protocol/Internet Protocol (TCP/IP) network
(e.g., the Internet.) The user device 102 is coupled to the
cloud computing system 110 via one or more service end-
points 112. Depending on the type of cloud service provided,
these endpoints give varying amounts of control relative to
the provisioning of resources within the cloud computing
system 110. For example, SaaS endpoint 112a will typically
only give information and access relative to the application
running on the cloud storage system, and the scaling and
processing aspects of the cloud computing system will be
obscured from the user. PaaS endpoint 11256 will typically
give an abstract Application Programming Interface (API)
that allows developers to declaratively request or command
the backend storage, computation, and scaling resources
provided by the cloud, without giving exact control to the
user. laaS endpoint 112¢ will typically provide the ability to
directly request the provisioning of resources, such as com-
putation units (typically virtual machines), software-defined
or software-controlled network elements like routers,
switches, domain name servers, etc., file or object storage
facilities, authorization services, database services, queue
services and endpoints, etc. In addition, users interacting
with an IaaS cloud are typically able to provide virtual
machine images that have been customized for user-specific
functions. This allows the cloud computing system 110 to be
used for new, user-defined services without requiring spe-
cific support.

It is important to recognize that the control allowed via an
IaaS endpoint is not complete. Within the cloud computing
system 110 are one or more cloud controllers 120 (running
what is sometimes called a “cloud operating system™) that
work on an even lower level, interacting with physical
machines, managing the contradictory demands of the multi-
tenant cloud computing system 110. The workings of the
cloud controllers 120 are typically not exposed outside of
the cloud computing system 110, even in an laaS context. In
one embodiment, the commands received through one of the
service endpoints 112 are then routed via one or more
internal networks 114. The internal network 114 couples the
different services to each other. The internal network 114
may encompass various protocols or services, including but
not limited to electrical, optical, or wireless connections at
the physical layer; Ethernet, Fibre channel, ATM, and
SONET at the MAC layer; TCP, UDP, ZeroMQ or other
services at the connection layer; and XMPP, HTTP, AMPQ,
STOMP, SMS, SMTP, SNMP, or other standards at the
protocol layer. The internal network 114 is typically not
exposed outside the cloud computing system, except to the
extent that one or more virtual networks 116 may be exposed
that control the internal routing according to various rules.
The virtual networks 116 typically do not expose as much
complexity as may exist in the actual internal network 114;
but varying levels of granularity can be exposed to the
control of the user, particularly in laaS services.

In one or more embodiments, it may be useful to include
various processing or routing nodes in the network layers
114 and 116, such as proxy/gateway 118. Other types of
processing or routing nodes may include switches, routers,
switch fabrics, caches, format modifiers, or correlators.
These processing and routing nodes may or may not be
visible to the outside. It is typical that one level of processing
or routing nodes may be internal only, coupled to the internal
network 114, whereas other types of network services may

US 9,471,384 B2

5

be defined by or accessible to users, and show up in one or
more virtual networks 116. Either of the internal network
114 or the virtual networks 116 may be encrypted or
authenticated according to the protocols and services
described below.

In various embodiments, one or more parts of the cloud
computing system 110 may be disposed on a single host.
Accordingly, some of the “network”™ layers 114 and 116 may
be composed of an internal call graph, inter-process com-
munication (IPC), or a shared memory communication
system.

Once a communication passes from the endpoints via a
network layer 114 or 116, as well as possibly via one or more
switches or processing devices 118, it is received by one or
more applicable cloud controllers 120. The cloud controllers
120 are responsible for interpreting the message and coor-
dinating the performance of the necessary corresponding
services, returning a response if necessary. Although the
cloud controllers 120 may provide services directly, more
typically the cloud controllers 120 are in operative contact
with the service resources 130 necessary to provide the
corresponding services. For example, it is possible for
different services to be provided at different levels of
abstraction. For example, a “compute” service 130a may
work at an laaS level, allowing the creation and control of
user-defined virtual computing resources. In the same cloud
computing system 110, a PaaS-level object storage service
1305 may provide a declarative storage API, and a SaaS-
level Queue service 130c, DNS service 130d, or Database
service 130e may provide application services without
exposing any of the underlying scaling or computational
resources. Other services are contemplated as discussed in
detail below.

In various embodiments, various cloud computing ser-
vices or the cloud computing system itself may require a
message passing system. The message routing service 140 is
available to address this need, but it is not a required part of
the system architecture in at least one embodiment. In one
embodiment, the message routing service is used to transfer
messages from one component to another without explicitly
linking the state of the two components. Note that this
message routing service 140 may or may not be available for
user-addressable systems; in one preferred embodiment,
there is a separation between storage for cloud service state
and for user data, including user service state.

In various embodiments, various cloud computing ser-
vices or the cloud computing system itself may require a
persistent storage for system state. The data store 150 is
available to address this need, but it is not a required part of
the system architecture in at least one embodiment. In one
embodiment, various aspects of system state are saved in
redundant databases on various hosts or as special files in an
object storage service. In a second embodiment, a relational
database service is used to store system state. In a third
embodiment, a column, graph, or document-oriented data-
base is used. Note that this persistent storage may or may not
be available for user-addressable systems; in one preferred
embodiment, there is a separation between storage for cloud
service state and for user data, including user service state.

In various embodiments, it may be useful for the cloud
computing system 110 to have a system controller 160. In
one embodiment, the system controller 160 is similar to the
cloud computing controllers 120, except that it is used to
control or direct operations at the level of the cloud com-
puting system 110 rather than at the level of an individual
service.

20

25

40

45

50

55

6

For clarity of discussion above, only one user device 102
has been illustrated as connected to the cloud computing
system 110, and the discussion generally referred to receiv-
ing a communication from outside the cloud computing
system, routing it to a cloud controller 120, and coordinating
processing of the message via a service 130, the infrastruc-
ture described is also equally available for sending out
messages. These messages may be sent out as replies to
previous communications, or they may be internally
sourced. Routing messages from a particular service 130 to
a user device 102 is accomplished in the same manner as
receiving a message from user device 102 to a service 130,
just in reverse. The precise manner of receiving, processing,
responding, and sending messages is described below with
reference to the various discussed service embodiments.
One of skill in the art will recognize, however, that a
plurality of user devices 102 may, and typically will, be
connected to the cloud computing system 110 and that each
element or set of elements within the cloud computing
system is replicable as necessary. Further, the cloud com-
puting system 110, whether or not it has one endpoint or
multiple endpoints, is expected to encompass embodiments
including public clouds, private clouds, hybrid clouds, and
multi-vendor clouds.

Each of the user device 102, the cloud computing system
110, the endpoints 112, the network switches and processing
nodes 118, the cloud controllers 120 and the cloud services
130 typically include a respective information processing
system, a subsystem, or a part of a subsystem for executing
processes and performing operations (e.g., processing or
communicating information). An information processing
system is an electronic device capable of processing, execut-
ing or otherwise handling information, such as a computer.
FIG. 2 shows an information processing system 210 that is
representative of one of, or a portion of, the information
processing systems described above.

Referring now to FIG. 2, diagram 200 shows an infor-
mation processing system 210 configured to host one or
more virtual machines, coupled to a network 205. The
network 205 could be one or both of the networks 114 and
116 described above. An information processing system is
an electronic device capable of processing, executing or
otherwise handling information. Examples of information
processing systems include a server computer, a personal
computer (e.g., a desktop computer or a portable computer
such as, for example, a laptop computer), a handheld com-
puter, and/or a variety of other information handling systems
known in the art. The information processing system 210
shown is representative of, one of, or a portion of, the
information processing systems described above.

The information processing system 210 may include any
or all of the following: (a) a processor 212 for executing and
otherwise processing instructions, (b) one or more network
interfaces 214 (e.g., circuitry) for communicating between
the processor 212 and other devices, those other devices
possibly located across the network 205; (c) a memory
device 216 (e.g., FLASH memory, a random access memory
(RAM) device or a read-only memory (ROM) device for
storing information (e.g., instructions executed by processor
212 and data operated upon by processor 212 in response to
such instructions)). In some embodiments, the information
processing system 210 may also include a separate com-
puter-readable medium 218 operably coupled to the proces-
sor 212 for storing information and instructions as described
further below.

In one embodiment, there is more than one network
interface 214, so that the multiple network interfaces can be

US 9,471,384 B2

7

used to separately route management, production, and other
traffic. In one exemplary embodiment, an information pro-
cessing system has a “management” interface at 1 GB/s, a
“production” interface at 10 GB/s, and may have additional
interfaces for channel bonding, high availability, or perfor-
mance. An information processing device configured as a
processing or routing node may also have an additional
interface dedicated to public Internet traffic, and specific
circuitry or resources necessary to act as a VLAN trunk.

In some embodiments, the information processing system
210 may include a plurality of input/output devices 220a-n
which is operably coupled to the processor 212, for inputting
or outputting information, such as a display device 220q, a
print device 2205, or other electronic circuitry 220c-r for
performing other operations of the information processing
system 210 known in the art.

With reference to the computer-readable media, including
both memory device 216 and secondary computer-readable
medium 218, the computer-readable media and the proces-
sor 212 are structurally and functionally interrelated with
one another as described below in further detail, and infor-
mation processing system of the illustrative embodiment is
structurally and functionally interrelated with a respective
computer-readable medium similar to the manner in which
the processor 212 is structurally and functionally interrelated
with the computer-readable media 216 and 218. As dis-
cussed above, the computer-readable media may be imple-
mented using a hard disk drive, a memory device, and/or a
variety of other computer-readable media known in the art,
and when including functional descriptive material, data
structures are created that define structural and functional
interrelationships between such data structures and the com-
puter-readable media (and other aspects of the system 200).
Such interrelationships permit the data structures’ function-
ality to be realized. For example, in one embodiment the
processor 212 reads (e.g., accesses or copies) such func-
tional descriptive material from the network interface 214,
the computer-readable media 218 onto the memory device
216 of the information processing system 210, and the
information processing system 210 (more particularly, the
processor 212) performs its operations, as described else-
where herein, in response to such material stored in the
memory device of the information processing system 210. In
addition to reading such functional descriptive material from
the computer-readable medium 218, the processor 212 is
capable of reading such functional descriptive material from
(or through) the network 105. In one embodiment, the
information processing system 210 includes at least one type
of computer-readable media that is non-transitory. For
explanatory purposes below, singular forms such as “com-
puter-readable medium,” “memory,” and “disk” are used,
but it is intended that these may refer to all or any portion
of the computer-readable media available in or to a particu-
lar information processing system 210, without limiting
them to a specific location or implementation.

The information processing system 210 includes a hyper-
visor 230. The hypervisor 230 may be implemented in
software, as a subsidiary information processing system, or
in a tailored electrical circuit or as software instructions to
be used in conjunction with a processor to create a hardware-
software combination that implements the specific function-
ality described herein. To the extent that software is used to
implement the hypervisor, it may include software that is
stored on a computer-readable medium, including the com-
puter-readable medium 218. The hypervisor may be
included logically “below” a host operating system, as a host
itself, as part of a larger host operating system, or as a

10

15

20

25

30

35

40

45

50

55

60

65

8

program or process running “above” or “on top of” a host
operating system. Examples of hypervisors include Xen-
server, KVM, VMware, Microsoft’s Hyper-V, and emulation
programs such as QEMU.

The hypervisor 230 includes the functionality to add,
remove, and modify a number of logical containers 232a-n
associated with the hypervisor. Zero, one, or many of the
logical containers 232a-» contain associated operating envi-
ronments 234a-r. The logical containers 232a-n can imple-
ment various interfaces depending upon the desired charac-
teristics of the operating environment. In one embodiment,
a logical container 232 implements a hardware-like inter-
face, such that the associated operating environment 234
appears to be running on or within an information process-
ing system such as the information processing system 210.
For example, one embodiment of a logical container 234
could implement an interface resembling an x86, x86-64,
ARM, or other computer instruction set with appropriate
RAM, busses, disks, and network devices. A corresponding
operating environment 234 for this embodiment could be an
operating system such as Microsoft Windows, Linux, Linux-
Android, or Mac OS X. In another embodiment, a logical
container 232 implements an operating system-like inter-
face, such that the associated operating environment 234
appears to be running on or within an operating system. For
example one embodiment of this type of logical container
232 could appear to be a Microsoft Windows, Linux, or Mac
OS X operating system. Another possible operating system
includes an Android operating system, which includes sig-
nificant runtime functionality on top of a lower-level kernel.
A corresponding operating environment 234 could enforce
separation between users and processes such that each
process or group of processes appeared to have sole access
to the resources of the operating system. In a third environ-
ment, a logical container 232 implements a software-defined
interface, such a language runtime or logical process that the
associated operating environment 234 can use to run and
interact with its environment. For example one embodiment
of this type of logical container 232 could appear to be a
Java, Dalvik, Lua, Python, or other language virtual
machine. A corresponding operating environment 234 would
use the built-in threading, processing, and code loading
capabilities to load and run code. Adding, removing, or
modifying a logical container 232 may or may not also
involve adding, removing, or modifying an associated oper-
ating environment 234. For ease of explanation below, these
operating environments will be described in terms of an
embodiment as “Virtual Machines,” or “VMs,” but this is
simply one implementation among the options listed above.

In one or more embodiments, a VM has one or more
virtual network interfaces 236. How the virtual network
interface is exposed to the operating environment depends
upon the implementation of the operating environment. In
an operating environment that mimics a hardware computer,
the virtual network interface 236 appears as one or more
virtual network interface cards. In an operating environment
that appears as an operating system, the virtual network
interface 236 appears as a virtual character device or socket.
In an operating environment that appears as a language
runtime, the virtual network interface appears as a socket,
queue, message service, or other appropriate construct. The
virtual network interfaces (VNIs) 236 may be associated
with a virtual switch (Vswitch) at either the hypervisor or
container level. The VNI 236 logically couples the operating
environment 234 to the network, and allows the VMs to send

US 9,471,384 B2

9

and receive network traffic. In one embodiment, the physical
network interface card 214 is also coupled to one or more
VMs through a Vswitch.

In one or more embodiments, each VM includes identi-
fication data for use naming, interacting, or referring to the
VM. This can include the Media Access Control (MAC)
address, the Internet Protocol (IP) address, and one or more
unambiguous names or identifiers.

In one or more embodiments, a “volume” is a detachable
block storage device. In some embodiments, a particular
volume can only be attached to one instance at a time,
whereas in other embodiments a volume works like a
Storage Area Network (SAN) so that it can be concurrently
accessed by multiple devices. Volumes can be attached to
either a particular information processing device or a par-
ticular virtual machine, so they are or appear to be local to
that machine. Further, a volume attached to one information
processing device or VM can be exported over the network
to share access with other instances using common file
sharing protocols. In other embodiments, there are areas of
storage declared to be “local storage.” Typically a local
storage volume will be storage from the information pro-
cessing device shared with or exposed to one or more
operating environments on the information processing
device. Local storage is guaranteed to exist only for the
duration of the operating environment; recreating the oper-
ating environment may or may not remove or erase any local
storage associated with that operating environment.

Turning now to FIG. 3, a simple network operating
environment 300 for a cloud controller or cloud service is
shown. The network operating environment 300 includes
multiple information processing systems 310a-n, each of
which correspond to a single information processing system
210 as described relative to FIG. 2, including a hypervisor
230, zero or more logical containers 232 and zero or more
operating environments 234. The information processing
systems 310a-z are connected via a communication medium
312, typically implemented using a known network protocol
such as Ethernet, Fibre Channel, Infiniband, or IEEE 1394.
For ease of explanation, the network operating environment
300 will be referred to as a “cluster,” “group,” or “zone” of
operating environments. The cluster may also include a
cluster monitor 314 and a network routing element 316. The
cluster monitor 314 and network routing element 316 may
be implemented as hardware, as software running on hard-
ware, or may be implemented completely as software. In one
implementation, one or both of the cluster monitor 314 or
network routing element 316 is implemented in a logical
container 232 using an operating environment 234 as
described above. In another embodiment, one or both of the
cluster monitor 314 or network routing element 316 is
implemented so that the cluster corresponds to a group of
physically co-located information processing systems, such
as in a rack, row, or group of physical machines.

The cluster monitor 314 provides an interface to the
cluster in general, and provides a single point of contact
allowing someone outside the system to query and control
any one of the information processing systems 310, the
logical containers 232 and the operating environments 234.
In one embodiment, the cluster monitor also provides moni-
toring and reporting capabilities.

The network routing element 316 allows the information
processing systems 310, the logical containers 232 and the
operating environments 234 to be connected together in a
network topology. The illustrated tree topology is only one
possible topology; the information processing systems and

20

40

45

50

55

10

operating environments can be logically arrayed in a ring, in
a star, in a graph, or in multiple logical arrangements through
the use of vLANS.

In one embodiment, the cluster also includes a cluster
controller 318. The cluster controller is outside the cluster,
and is used to store or provide identifying information
associated with the different addressable elements in the
cluster—specifically the cluster generally (addressable as
the cluster monitor 314), the cluster network router (address-
able as the network routing element 316), each information
processing system 310, and with each information process-
ing system the associated logical containers 232 and oper-
ating environments 234.

The cluster controller 318 is outside the cluster, and is
used to store or provide identifying information associated
with the different addressable elements in the cluster—
specifically the cluster generally (addressable as the cluster
monitor 314), the cluster network router (addressable as the
network routing element 316), each information processing
system 310, and with each information processing system
the associated logical containers 232 and operating environ-
ments 234. In one embodiment, the cluster controller 318
includes a registry of VM information 319. In a second
embodiment, the registry 319 is associated with but not
included in the cluster controller 318.

In one embodiment, the cluster also includes one or more
instruction processors 320. In the embodiment shown, the
instruction processor is located in the hypervisor, but it is
also contemplated to locate an instruction processor within
an active VM or at a cluster level, for example in a piece of
machinery associated with a rack or cluster. In one embodi-
ment, the instruction processor 320 is implemented in a
tailored electrical circuit or as software instructions to be
used in conjunction with a physical or virtual processor to
create a hardware-software combination that implements the
specific functionality described herein. To the extent that one
embodiment includes computer-executable instructions,
those instructions may include software that is stored on a
computer-readable medium. Further, one or more embodi-
ments have associated with them a buffer 322. The buffer
322 can take the form of data structures, a memory, a
computer-readable medium, or an off-script-processor facil-
ity. For example, one embodiment uses a language runtime
as an instruction processor 320. The language runtime can
be run directly on top of the hypervisor, as a process in an
active operating environment, or can be run from a low-
power embedded processor. In a second embodiment, the
instruction processor 320 takes the form of a series of
interoperating but discrete components, some or all of which
may be implemented as software programs. For example, in
this embodiment, an interoperating bash shell, gzip program,
an rsync program, and a cryptographic accelerator chip are
all components that may be used in an instruction processor
320. In another embodiment, the instruction processor 320 is
a discrete component, using a small amount of flash and a
low power processor, such as a low-power ARM processor.
This hardware-based instruction processor can be embedded
on a network interface card, built into the hardware of a rack,
or provided as an add-on to the physical chips associated
with an information processing system 310. It is expected
that in many embodiments, the instruction processor 320
will have an integrated battery and will be able to spend an
extended period of time without drawing current. Various
embodiments also contemplate the use of an embedded
Linux or Linux-Android environment.

US 9,471,384 B2

11

Networking

Referring now to FIG. 4a, a diagram of the network
connections available to one embodiment of the system is
shown. The network 400 is one embodiment of a virtual
network 116 as discussed relative to FIG. 1, and is imple-
mented on top of the internal network layer 114. A particular
node is connected to the virtual network 400 through a
virtual network interface 236 operating through physical
network interface 214. The VLANSs, VSwitches, VPNs, and
other pieces of network hardware (real or virtual) are may be
network routing elements 316 or may serve another function
in the communications medium 312.

In one embodiment, the cloud computing system 110 uses
both “fixed” IPs and “floating” IPs to address virtual
machines. Fixed IPs are assigned to an instance on creation
and stay the same until the instance is explicitly terminated.
Floating IPs are IP addresses that can be dynamically
associated with an instance. A floating IP address can be
disassociated and associated with another instance at any
time.

Different embodiments include various strategies for
implementing and allocating fixed IPs, including “flat”
mode, a “flat DHCP” mode, and a “VLAN DHCP” mode.

In one embodiment, fixed IP addresses are managed using
a flat Mode. In this embodiment, an instance receives a fixed
IP from a pool of available IP addresses. All instances are
attached to the same bridge by default. Other networking
configuration instructions are placed into the instance before
it is booted or on boot.

In another embodiment, fixed IP addresses are managed
using a flat DHCP mode. Flat DHCP mode is similar to the
flat mode, in that all instances are attached to the same
bridge. Instances will attempt to bridge using the default
Ethernet device or socket. Instead of allocation from a fixed
pool, a DHCP server listens on the bridge and instances
receive their fixed IPs by doing a dhepdiscover.

Turning now to a preferred embodiment using VLAN
DHCP mode, there are two groups of off-local-network
users, the private users 402 and the public internet users 404.
To respond to communications from the private users 402
and the public users 404, the network 400 includes three
nodes, network node 410, private node 420, and public node
430. The nodes include one or more virtual machines or
virtual devices, such as DNS/DHCP server 412 and virtual
router VM 414 on network node 410, VPN VM 422 and
private VM 424 on private node 420, and public VM 432 on
public node 430.

In one embodiment, VLAN DHCP mode requires a
switch that supports host-managed VL AN tagging. In one
embodiment, there is a VLAN 406 and bridge 416 for each
project or group. In the illustrated embodiment, there is a
VLAN associated with a particular project. The project
receives a range of private IP addresses that are only
accessible from inside the VLAN. and assigns an IP address
from this range to private node 420, as well as to a VNI in
the virtual devices in the VLAN. In one embodiment, DHCP
server 412 is running on a VM that receives a static VLAN
IP address at a known address, and virtual router VM 414,
VPN VM 422, private VM 424, and public VM 432 all
receive private IP addresses upon request to the DHCP
server running on the DHCP server VM. In addition, the
DHCP server provides a public IP address to the virtual
router VM 414 and optionally to the public VM 432. In a
second embodiment, the DHCP server 412 is running on or
available from the virtual router VM 414, and the public IP
address of the virtual router VM 414 is used as the DHCP
address.

10

15

20

25

30

35

40

45

50

55

60

65

12

In an embodiment using VLAN DHCP mode, there is a
private network segment for each project’s or group’s
instances that can be accessed via a dedicated VPN connec-
tion from the Internet. As described below, each VLAN
project or group gets its own VLAN, network bridge, and
subnet. In one embodiment, subnets are specified by the
network administrator, and assigned dynamically to a proj-
ect or group when required. A DHCP Server is started for
each VL AN to pass out IP addresses to VM instances from
the assigned subnet. All instances belonging to the VLAN
project or group are bridged into the same VLLAN. In this
fashion, network traffic between VM instances belonging to
the same VL AN is always open but the system can enforce
isolation of network traffic between different projects by
enforcing one VLAN per project.

As shown in FIG. 4a, VLAN DHCP mode includes
provisions for both private and public access. For private
access (shown by the arrows to and from the private users
cloud 402), users create an access keypair (as described
further below) for access to the virtual private network
through the gateway VPN VM 422. From the VPN VM 422,
both the private VM 424 and the public VM 432 are
accessible via the private IP addresses valid on the VLLAN.

Public access is shown by the arrows to and from the
public users cloud 404. Communications that come in from
the public users cloud arrive at the virtual router VM 414 and
are subject to network address translation (NAT) to access
the public virtual machine via the bridge 416. Communica-
tions out from the private VM 424 are source NATted by the
bridge 416 so that the external source appears to be the
virtual router VM 414. If the public VM 432 does not have
an externally routable address, communications out from the
public VM 432 may be source NATted as well.

In one embodiment of VLAN DHCP mode, the second IP
in each private network is reserved for the VPN VM instance
422. This gives a consistent IP to the instance so that
forwarding rules can be more easily created. The network
for each project is given a specific high-numbered port on
the public IP of the network node 410. This port is auto-
matically forwarded to the appropriate VPN port on the VPN
VM 422.

In one embodiment, each group or project has its own
certificate authority (CA) 423. The CA 423 is used to sign
the certificate for the VPN VM 422, and is also passed to
users on the private users cloud 402. When a certificate is
revoked, a new Certificate Revocation List (CRL) is gener-
ated. The VPN VM 422 will block revoked users from
connecting to the VPN if they attempt to connect using a
revoked certificate.

In a project VLLAN organized similarly to the embodiment
described above, the project has an independent RFC 1918
IP space; public IP via NAT; has no default inbound network
access without public NAT; has limited, controllable out-
bound network access; limited, controllable access to other
project segments; and VPN access to instance and cloud
APIs. Further, there is a DMZ segment for support services,
allowing project metadata and reporting to be provided in a
secure manner.

In one embodiment, VLLANs are segregated using 802.1q
VLAN tagging in the switching layer, but other tagging
schemes such as 802.1 ad, MPLS, or frame tagging are also
contemplated. Network hosts create VL AN-specific inter-
faces and bridges as required.

In one embodiment, private VM 424 has per-VLAN
interfaces and bridges created as required. These do not have
IP addresses in the host to protect host access. Access is

US 9,471,384 B2

13

provided via routing table entries created per project and
instance to protect against IP’MAC address spoofing and
ARP poisoning.

FIG. 44 is a flowchart showing the establishment of a
VLAN for a project according to one embodiment. The
process 450 starts at step 451, when a VM instance for the
project is requested. When running a VM instance, a user
needs to specify a project for the instances, and the appli-
cable security rules and security groups (as described herein)
that the instance should join. At step 452, a cloud controller
determines if this is the first instance to be created for the
project. If this is the first, then the process proceeds to step
453. If the project already exists, then the process moves to
step 459. At step 453, a network controller is identified to act
as the network host for the project. This may involve
creating a virtual network device and assigning it the role of
network controller. In one embodiment, this is a virtual
router VM 414. At step 454, an unused VL AN id and unused
subnet are identified. At step 455, the VLAN id and subnet
are assigned to the project. At step 456, DHCP server 412
and bridge 416 are instantiated and registered. At step 457,
the VM instance request is examined to see if the request is
for a private VM 424 or public VM 432. If the request is for
a private VM, the process moves to step 458. Otherwise, the
process moves to step 460. At step 458, the VPN VM 422
is instantiated and allocated the second IP in the assigned
subnet. At step 459, the subnet and a VLAN have already
been assigned to the project. Accordingly, the requested VM
is created and assigned and assigned a private IP within the
project’s subnet. At step 460, the routing rules in bridge 416
are updated to properly NAT traffic to or from the requested
VM.

Message Service

Between the various virtual machines and virtual devices,
it may be necessary to have a reliable messaging infrastruc-
ture. In various embodiments, a message queuing service is
used for both local and remote communication so that there
is no requirement that any of the services exist on the same
physical machine. Various existing messaging infrastruc-
tures are contemplated, including AMQP, ZeroMQ, STOMP
and XMPP. Note that this messaging system may or may not
be available for user-addressable systems; in one preferred
embodiment, there is a separation between internal messag-
ing services and any messaging services associated with user
data.

In one embodiment, the message service sits between
various components and allows them to communicate in a
loosely coupled fashion. This can be accomplished using
Remote Procedure Calls (RPC hereinafter) to communicate
between components, built atop either direct messages and/
or an underlying publish/subscribe infrastructure. In a typi-
cal embodiment, it is expected that both direct and topic-
based exchanges are used. This allows for decoupling of the
components, full asynchronous communications, and trans-
parent balancing between equivalent components. In some
embodiments, calls between different APIs can be supported
over the distributed system by providing an adapter class
which takes care of marshalling and unmarshalling of mes-
sages into function calls.

In one embodiment, a cloud controller 120 (or the appli-
cable cloud service 130) creates two queues at initialization
time, one that accepts node-specific messages and another
that accepts generic messages addressed to any node of a
particular type. This allows both specific node control as
well as orchestration of the cloud service without limiting
the particular implementation of a node. In an embodiment

40

45

60

14

in which these message queues are bridged to an API, the
API can act as a consumer, server, or publisher.

Turning now to FIG. 5a, one implementation of a message
service 140 is shown at reference number 500. For simplic-
ity of description, FIG. 5a shows the message service 500
when a single instance 502 is deployed and shared in the
cloud computing system 110, but the message service 500
can be either centralized or fully distributed.

In one embodiment, the message service 500 keeps traffic
associated with different queues or routing keys separate, so
that disparate services can use the message service without
interfering with each other. Accordingly, the message queue
service may be used to communicate messages between
network elements, between cloud services 130, between
cloud controllers 120, between network elements, or
between any group of sub-elements within the above. More
than one message service 500 may be used, and a cloud
service 130 may use its own message service as required.

For clarity of exposition, access to the message service
500 will be described in terms of “Invokers” and “Workers,”
but these labels are purely expository and are not intended
to convey a limitation on purpose; in some embodiments, a
single component (such as a VM) may act first as an Invoker,
then as a Worker, the other way around, or simultaneously
in each role. An Invoker is a component that sends messages
in the system via two operations: 1) an RPC (Remote
Procedure Call) directed message and ii) an RPC broadcast.
A Worker is a component that receives messages from the
message system and replies accordingly.

In one embodiment, there is a message server 505 includ-
ing one or more exchanges 510. In a second embodiment,
the message system is “brokerless,” and one or more
exchanges are located at each client. The exchanges 510 act
as internal message routing elements so that components
interacting with the message service 500 can send and
receive messages. In one embodiment, these exchanges are
subdivided further into a topic exchange 510a and a direct
exchange 5105. An exchange 510 is a routing structure or
system that exists in a particular context. In a currently
preferred embodiment, multiple contexts can be included
within a single message service with each one acting inde-
pendently of the others. In one embodiment, the type of
exchange, such as a topic exchange 510a vs. direct exchange
5106 determines the routing policy. In a second embodi-
ment, the routing policy is determined via a series of routing
rules evaluated by the exchange 510.

The direct exchange 510a is a routing element created
during or for RPC directed message operations. In one
embodiment, there are many instances of a direct exchange
510a that are created as needed for the message service 500.
In a further embodiment, there is one direct exchange 510a
created for each RPC directed message received by the
system.

The topic exchange 510q is a routing element created
during or for RPC directed broadcast operations. In one
simple embodiment, every message received by the topic
exchange is received by every other connected component.
In a second embodiment, the routing rule within a topic
exchange is described as publish-subscribe, wherein differ-
ent components can specify a discriminating function and
only topics matching the discriminator are passed along. In
one embodiment, there are many instances of a topic
exchange 5105 that are created as needed for the message
service 500. In one embodiment, there is one topic-based
exchange for every topic created in the cloud computing

US 9,471,384 B2

15

system. In a second embodiment, there are a set number of
topics that have pre-created and persistent topic exchanges
5105.

Within one or more of the exchanges 510, it may be useful
to have a queue element 515. A queue 515 is a message
stream; messages sent into the stream are kept in the queue
515 until a consuming component connects to the queue and
fetches the message. A queue 515 can be shared or can be
exclusive. In one embodiment, queues with the same topic
are shared amongst Workers subscribed to that topic.

In a typical embodiment, a queue 515 will implement a
FIFO policy for messages and ensure that they are delivered
in the same order that they are received. In other embodi-
ments, however, a queue 515 may implement other policies,
such as LIFO, a priority queue (highest-priority messages
are delivered first), or age (oldest objects in the queue are
delivered first), or other configurable delivery policies. In
other embodiments, a queue 515 may or may not make any
guarantees related to message delivery or message persis-
tence.

In one embodiment, element 520 is a topic publisher. A
topic publisher 520 is created, instantiated, or awakened
when an RPC directed message or an RPC broadcast opera-
tion is executed; this object is instantiated and used to push
a message to the message system. Every publisher connects
always to the same topic-based exchange; its life-cycle is
limited to the message delivery.

In one embodiment, element 530 is a direct consumer. A
direct consumer 530 is created, instantiated, or awakened if
an RPC directed message operation is executed; this com-
ponent is instantiated and used to receive a response mes-
sage from the queuing system. Every direct consumer 530
connects to a unique direct-based exchange via a unique
exclusive queue, identified by a UUID or other unique name.
The life-cycle of the direct consumer 530 is limited to the
message delivery. In one embodiment, the exchange and
queue identifiers are included the message sent by the topic
publisher 520 for RPC directed message operations.

In one embodiment, elements 540 (elements 540a and
5405) are topic consumers. In one embodiment, a topic
consumer 540 is created, instantiated, or awakened at system
start. In a second embodiment, a topic consumer 540 is
created, instantiated, or awakened when a topic is registered
with the message system 500. In a third embodiment, a topic
consumer 540 is created, instantiated, or awakened at the
same time that a Worker or Workers are instantiated and
persists as long as the associated Worker or Workers have
not been destroyed. In this embodiment, the topic consumer
540 is used to receive messages from the queue and it
invokes the appropriate action as defined by the Worker role.
A topic consumer 540 connects to the topic-based exchange
either via a shared queue or via a unique exclusive queuve. In
one embodiment, every Worker has two associated topic
consumers 540, one that is addressed only during an RPC
broadcast operations (and it connects to a shared queue
whose exchange key is defined by the topic) and the other
that is addressed only during an RPC directed message
operations, connected to a unique queue whose with the
exchange key is defined by the topic and the host.

In one embodiment, element 550 is a direct publisher. In
one embodiment, a direct publisher 550 is created, instan-
tiated, or awakened for RPC directed message operations
and it is instantiated to return the message required by the
request/response operation. The object connects to a direct-
based exchange whose identity is dictated by the incoming
message.

10

15

20

25

30

35

40

45

50

55

60

65

16

Turning now to FIG. 55, one embodiment of the process
of sending an RPC directed message is shown relative to the
elements of the message system 500 as described relative to
FIG. 5a. All elements are as described above relative to FIG.
5a unless described otherwise. At step 560, a topic publisher
520 is instantiated. At step 561, the topic publisher 520 sends
a message to an exchange 5105. At step 562, a direct
consumer 530 is instantiated to wait for the response mes-
sage. At step 563, the message is dispatched by the exchange
5105. At step 564, the message is fetched by the topic
consumer 540 dictated by the routing key (either by topic or
by topic and host). At step 565, the message is passed to a
Worker associated with the topic consumer 540. If needed,
at step 566, a direct publisher 550 is instantiated to send a
response message via the message system 500. At step 567,
the direct publisher 540 sends a message to an exchange
510a. At step 568, the response message is dispatched by the
exchange 510a. At step 569, the response message is fetched
by the direct consumer 530 instantiated to receive the
response and dictated by the routing key. At step 570, the
message response is passed to the Invoker.

Turning now to FIG. 5¢, one embodiment of the process
of sending an RPC broadcast message is shown relative to
the elements of the message system 500 as described relative
to FIG. 5a. All elements are as described above relative to
FIG. 5a unless described otherwise. At step 580, a topic
publisher 520 is instantiated. At step 581, the topic publisher
520 sends a message to an exchange 5105. At step 582, the
message is dispatched by the exchange 5105. At step 583,
the message is fetched by a topic consumer 540 dictated by
the routing key (either by topic or by topic and host). At step
584, the message is passed to a Worker associated with the
topic consumer 540.

In some embodiments, a response to an RPC broadcast
message can be requested. In that case, the process follows
the steps outlined relative to FIG. 55 to return a response to
the Invoker.

Rule Engine

Because many aspects of the cloud computing system do
not allow direct access to the underlying hardware or
services, many aspects of the cloud computing system are
handled declaratively, through rule-based computing. Rule-
based computing organizes statements into a data model that
can be used for deduction, rewriting, and other inferential or
transformational tasks. The data model can then be used to
represent some problem domain and reason about the
objects in that domain and the relations between them. In
one embodiment, one or more controllers or services have an
associated rule processor that performs rule-based deduc-
tion, inference, and reasoning.

Rule Engines can be implemented similarly to instruction
processors as described relative to FIG. 3, and may be
implemented as a sub-module of a instruction processor
where needed. In other embodiments, Rule Engines can be
implemented as discrete components, for example as a
tailored electrical circuit or as software instructions to be
used in conjunction with a hardware processor to create a
hardware-software combination that implements the specific
functionality described herein. To the extent that one
embodiment includes computer-executable instructions,
those instructions may include software that is stored on a
computer-readable medium. Further, one or more embodi-
ments have associated with them a buffer. The buffer can
take the form of data structures, a memory, a computer-
readable medium, or an off-rule-engine facility. For
example, one embodiment uses a language runtime as a rule
engine, running as a discrete operating environment, as a

US 9,471,384 B2

17

process in an active operating environment, or can be run
from a low-power embedded processor. In a second embodi-
ment, the rule engine takes the form of a series of interop-
erating but discrete components, some or all of which may
be implemented as software programs. In another embodi-
ment, the rule engine is a discrete component, using a small
amount of flash and a low power processor, such as a
low-power ARM processor.

Security and Access Control

One subset of rule-based systems is role-based computing
systems. A role-based computing system is a system in
which identities and resources are managed by aggregating
them into “roles” based on job functions, physical location,
legal controls, and other criteria. These roles can be used to
model organizational structures, manage assets, or organize
data. By arranging roles and the associated rules into graphs
or hierarchies, these roles can be used to reason about and
manage various resources.

In one application, role-based strategies have been used to
form a security model called Role-Based Access Control
(RBAC). RBAC associates special rules, called “permis-
sions,” with roles; each role is granted only the minimum
permissions necessary for the performance of the functions
associated with that role. Identities are assigned to roles,
giving the users and other entities the permissions necessary
to accomplish job functions. RBAC has been formalized
mathematically by NIST and accepted as a standard by
ANSI. American National Standard 359-2004 is the infor-
mation technology industry consensus standard for RBAC,
and is incorporated herein by reference in its entirety.

Because the cloud computing systems are designed to be
multi-tenant, it is necessary to include limits and security in
the basic architecture of the system. In one preferred
embodiment, this is done through rules declaring the exis-
tence of users, resources, projects, and groups. Rule-based
access controls govern the use and interactions of these
logical entities.

In a preferred embodiment, a user is defined as an entity
that will act in one or more roles. A user is typically
associated with an internal or external entity that will
interact with the cloud computing system in some respect. A
user can have multiple roles simultaneously. In one embodi-
ment of the system, a user’s roles define which API com-
mands that user can perform.

In a preferred embodiment, a resource is defined as some
object to which access is restricted. In various embodiments,
resources can include network or user access to a virtual
machine or virtual device, the ability to use the computa-
tional abilities of a device, access to storage, an amount of
storage, API access, ability to configure a network, ability to
access a network, network bandwidth, network speed, net-
work latency, ability to access or set authentication rules,
ability to access or set rules regarding resources, etc. In
general, any item which may be restricted or metered is
modeled as a resource.

In one embodiment, resources may have quotas associ-
ated with them. A quota is a rule limiting the use or access
to a resource. A quota can be placed on a per-project level,
a per-role level, a per-user level, or a per-group level. In one
embodiment, quotas can be applied to the number of vol-
umes which can be created, the total size of all volumes
within a project or group, the number of instances which can
be launched, both total and per instance type, the number of
processor cores which can be allocated, and publicly acces-
sible IP addresses. Other restrictions are also contemplated
as described herein.

10

15

20

25

30

35

40

45

50

55

60

65

18

In a preferred embodiment, a project is defined as a
flexible association of users, acting in certain roles, that will
define and access various resources. A project is typically
defined by an administrative user according to varying
demands. There may be templates for certain types of
projects, but a project is a logical grouping created for
administrative purposes and may or may not bear a neces-
sary relation to anything outside the project. In a preferred
embodiment, arbitrary roles can be defined relating to one or
more particular projects only.

In a preferred embodiment, a group is defined as a logical
association of some other defined entity. There may be
groups of users, groups of resources, groups of projects,
groups of quotas, or groups which contain multiple different
types of defined entities. For example, in one embodiment,
a group “development” is defined. The development group
may include a group of users with the tag “developers™ and
a group of virtual machine resources (“developer
machines”). These may be connected to a developer-only
virtual network (“devnet”). The development group may
have a number of ongoing development projects, each with
an associated “manager” role. There may be per-user quotas
on storage and a group-wide quota on the total monthly bill
associated with all development resources.

The applicable set of rules, roles, and quotas is based upon
context. In one embodiment, there are global roles, user-
specific roles, project-specific roles, and group-specific
roles. In one embodiment, a user’s actual permissions in a
particular project are the intersection of the global roles,
user-specific roles, project-specific roles, and group-specific
roles associated with that user, as well as any rules associ-
ated with project or group resources possibly affected by the
user.

In one preferred embodiment, authentication of a user is
performed through public/private encryption, with keys used
to authenticate particular users, or in some cases, particular
resources such as particular machines. A user or machine
may have multiple keypairs associated with different roles,
projects, groups, or permissions. For example, a different
key may be needed for general authentication and for project
access. In one such embodiment, a user is identified within
the system by the possession and use of one or more
cryptographic keys, such as an access and secret key. A
user’s access key needs to be included in a request, and the
request must be signed with the secret key. Upon receipt of
API requests, the rules engine verifies the signature and
executes commands on behalf of the user.

Some resources, such as virtual machine images, can be
shared by many users. Accordingly, it can be impractical or
insecure to include private cryptographic information in
association with a shared resource. In one embodiment, the
system supports providing public keys to resources dynami-
cally. In one exemplary embodiment, a public key, such as
an SSH key, is injected into a VM instance before it is
booted. This allows a user to login to the instances securely,
without sharing private key information and compromising
security. Other shared resources that require per-instance
authentication are handled similarly.

In one embodiment, a rule processor is also used to attach
and evaluate rule-based restrictions on non-user entities
within the system. In this embodiment, a “Cloud Security
Group” (or just “security group”) is a named collection of
access rules that apply to one or more non-user entities.
Typically these will include network access rules, such as
firewall policies, applicable to a resource, but the rules may
apply to any resource, project, or group. For example, in one
embodiment a security group specifies which incoming

US 9,471,384 B2

19

network traffic should be delivered to all VM instances in the
group, all other incoming traffic being discarded. Users with
the appropriate permissions (as defined by their roles) can
modify rules for a group. New rules are automatically
enforced for all running instances and instances launched
from then on.

When launching VM instances, a project or group admin-
istrator specifies which security groups it wants the VM to
join. If the directive to join the groups has been given by an
administrator with sufficient permissions, newly launched
VMs will become a member of the specified security groups
when they are launched. In one embodiment, an instance is
assigned to a “default” group if no groups are specified. In
a further embodiment, the default group allows all network
traffic from other members of this group and discards traffic
from other IP addresses and groups. The rules associated
with the default group can be modified by users with roles
having the appropriate permissions.

In some embodiments, a security group is similar to a role
for a non-user, extending RBAC to projects, groups, and
resources. For example, one rule in a security group can
stipulate that servers with the “webapp” role must be able to
connect to servers with the “database” role on port 3306. In
some embodiments, an instance can be launched with mem-
bership of multiple security groups—similar to a server with
multiple roles. Security groups are not necessarily limited,
and can be equally expressive as any other type of RBAC
security. In one preferred embodiment, all rules in security
groups are ACCEPT rules, making them easily composable.

In one embodiment, each rule in a security group must
specify the source of packets to be allowed. This can be
specified using CIDR notation (such as 10.22.0.0/16, rep-
resenting a private subnet in the 10.22 IP space, or 0.0.0.0/0
representing the entire Internet) or another security group.
The creation of rules with other security groups specified as
sources helps deal with the elastic nature of cloud comput-
ing; instances are impermanent and IP addresses frequently
change. In this embodiment, security groups can be main-
tained dynamically without having to adjust actual IP
addresses.

In one embodiment, the APIs, RBAC-based authentica-
tion system, and various specific roles are used to provide a
US eAuthentication-compatible federated authentication
system to achieve access controls and limits based on
traditional operational roles. In a further embodiment, the
implementation of auditing APIs provides the necessary
environment to receive a certification under FIPS 199 Mod-
erate classification for a hybrid cloud environment.

Typical implementations of US eAuthentication-compat-
ible systems are structured as a Federated LDAP user store,
back-ending to a SAML Policy Controller. The SAML
Policy Controller maps access requests or access paths, such
as requests to particular URLs, to a Policy Agent in front of
an eAuth-secured application. In a preferred embodiment,
the application-specific account information is stored either
in extended schema on the LDAP server itself, via the use of
a translucent LDAP proxy, or in an independent datastore
keyed off of the UID provided via SAML assertion.

As described above, in one embodiment API calls are
secured via access and secret keys, which are used to sign
API calls, along with traditional timestamps to prevent
replay attacks. The APIs can be logically grouped into sets
that align with the following typical roles:

Base User

System Administrator

Developer

Network Administrator

10

15

20

25

30

35

40

45

50

55

60

65

20

Project Administrator

Group Administrator

Cloud Administrator

Security

End-User/Third-Party User

In one currently preferred embodiment, System Admin-
istrators and Developers have the same permissions, Project
and Group Administrators have the same permissions, and
Cloud Administrators and Security have the same permis-
sions. The End-user or Third-party User is optional and
external, and may not have access to protected resources,
including APIs. Additional granularity of permissions is
possible by separating these roles. In various other embodi-
ments, the RBAC security system described above is
extended with SAML Token passing. The SAML token is
added to the API calls, and the SAML UID is added to the
instance metadata, providing end-to-end auditability of own-
ership and responsibility.

In an embodiment using the roles above, APIs can be
grouped according to role. Any authenticated user may:

Describe Instances

Describe Images

Describe Volumes

Describe Keypairs

Create Keypair

Delete Keypair

Create, Upload, Delete Buckets and Keys
System Administrators, Developers, Project Administrators,
and Group Administrators may:

Create, Attach, Delete Volume (Block Store)

Launch, Reboot, Terminate Instance

Register/Unregister Machine Image (project-wide)

Request or Review Audit Scans
Project or Group Administrators may:

Add and remove other users

Set roles

Manage groups
Network Administrators may:

Change Machine Image properties (public/private)

Change Firewall Rules

Define Cloud Security Groups

Allocate, Associate, Deassociate Public IP addresses

In this embodiment, Cloud Administrators and Security
personnel would have all permissions. In particular, access
to the audit subsystem would be restricted. Audit queries
may spawn long-running processes, consuming resources.
Further, detailed system information is a system vulnerabil-
ity, so proper restriction of audit resources and results would
be restricted by role.

In an embodiment as described above, APIs are extended
with three additional type declarations, mapping to the
“Confidentiality, Integrity, Availability” (“C.I.A.”) classifi-
cations of FIPS 199. These additional parameters would also
apply to creation of block storage volumes and creation of
object storage “buckets.” C.I.A. classifications on a bucket
would be inherited by the keys within the bucket. Estab-
lishing declarative semantics for individual API calls allows
the cloud environment to seamlessly proxy API calls to
external, third-party vendors when the requested C.I.A.
levels match.

In one embodiment, a hybrid or multi-vendor cloud uses
the VLAN DHCP networking architecture described relative
to FIG. 4 and the RBAC controls to manage and secure
inter-cluster networking. In this way the hybrid cloud envi-
ronment provides dedicated, potentially co-located physical
hardware with a network interconnect to the project or users’
cloud virtual network.

US 9,471,384 B2

21

In one embodiment, the interconnect is a bridged VPN
connection. In one embodiment, there is a VPN server at
each side of the interconnect with a unique shared certificate.
A security group is created specifying the access at each end
of the bridged connection. In a second embodiment, the
interconnect VPN implements audit controls so that the
connections between each side of the bridged connection
can be queried and controlled. Network discovery protocols
(ARP, CDP) can be used to provide information directly, and
existing protocols (SNMP location data, DNS LOC records)
overloaded to provide audit information.

In the disclosure that follows, the information processing
devices as described relative to FIG. 2 and the clusters as
described relative to FIG. 3 are used as underlying infra-
structure to build and administer various cloud services.
Except where noted specifically, either a single information
processing device or a cluster can be used interchangeably
to implement a single “node,” “service,” or “controller.”
Where a plurality of resources are described, such as a
plurality of storage nodes or a plurality of compute nodes,
the plurality of resources can be implemented as a plurality
of information processing devices, as a one-to-one relation-
ship of information processing devices, logical containers,
and operating environments, or in an MxN relationship of
information processing devices to logical containers and
operating environments.

Various aspects of the services implemented in the cloud
computing system may be referred to as “virtual machines”
or “virtual devices”; as described above, those refer to a
particular logical container and operating environment, con-
figured to perform the service described. The term
“instance” is sometimes used to refer to a particular virtual
machine running inside the cloud computing system. An
“instance type” describes the compute, memory and storage
capacity of particular VM instances.

Within the architecture described above, various services
are provided, and different capabilities can be included
through a plug-in architecture. Although specific services
and plugins are detailed below, these disclosures are
intended to be representative of the services and plugins
available for integration across the entire cloud computing
system 110.

Turning now to FIG. 6, an laaS-style computational cloud
service (a “compute” service) is shown at 600 according to
one embodiment. This is one embodiment of a cloud con-
troller 120 with associated cloud service 130 as described
relative to FIG. 1. Except as described relative to specific
embodiments, the existence of a compute service does not
require or prohibit the existence of other portions of the
cloud computing system 110 nor does it require or prohibit
the existence of other cloud controllers 120 with other
respective services 130.

To the extent that some components described relative to
the compute service 600 are similar to components of the
larger cloud computing system 110, those components may
be shared between the cloud computing system 110 and the
compute service 600, or they may be completely separate.
Further, to the extend that “controllers,” “nodes,” “servers,”
“managers,” “VMSs,” or similar terms are described relative
to the compute service 600, those can be understood to
comprise any of a single information processing device 210
as described relative to FIG. 2, multiple information pro-
cessing devices 210, a single VM as described relative to
FIG. 2, a group or cluster of VMs or information processing
devices as described relative to FIG. 3. These may run on a
single machine or a group of machines, but logically work
together to provide the described function within the system.

25

30

35

40

45

55

22

In one embodiment, compute service 600 includes an API
Server 610, a Compute Controller 620, an Auth Manager
630, an Object Store 640, a Volume Controller 650, a
Network Controller 660, and a Compute Manager 670.
These components are coupled by a communications net-
work of the type previously described. In one embodiment,
communications between various components are message-
oriented, using HTTP or a messaging protocol such as
AMQP, ZeroMQ, or STOMP.

Although various components are described as “calling”
each other or “sending” data or messages, one embodiment
makes the communications or calls between components
asynchronous with callbacks that get triggered when
responses are received. This allows the system to be archi-
tected in a “shared-nothing” fashion. To achieve the shared-
nothing property with multiple copies of the same compo-
nent, compute service 600 further includes distributed data
store 690. Global state for compute service 600 is written
into this store using atomic transactions when required.
Requests for system state are read out of this store. In some
embodiments, results are cached within controllers for short
periods of time to improve performance. In various embodi-
ments, the distributed data store 690 can be the same as, or
share the same implementation as Object Store 640.

In one embodiment, the API server 610 includes external
API endpoints 612. In one embodiment, the external API
endpoints 612 are provided over an RPC-style system, such
as CORBA, DCE/COM, SOAP, or XML-RPC. These follow
the calling structure and conventions defined in their respec-
tive standards. In another embodiment, the external API
endpoints 612 are basic HI'TP web services following a
REST pattern and identifiable via URL. Requests to read a
value from a resource are mapped to HI'TP GETs, requests
to create resources are mapped to HTTP PUTs, requests to
update values associated with a resource are mapped to
HTTP POSTs, and requests to delete resources are mapped
to HTTP DELETEs. In some embodiments, other REST-
style verbs are also available, such as the ones associated
with WebDay. In a third embodiment, the API endpoints 612
are provided via internal function calls, IPC, or a shared
memory mechanism. Regardless of how the API is pre-
sented, the external API endpoints 612 are used to handle
authentication, authorization, and basic command and con-
trol functions using various API interfaces. In one embodi-
ment, the same functionality is available via multiple APIs,
including APIs associated with other cloud computing sys-
tems. This enables API compatibility with multiple existing
tool sets created for interaction with offerings from other
vendors.

The Compute Controller 620 coordinates the interaction
of the various parts of the compute service 600. In one
embodiment, the various internal services that work together
to provide the compute service 600, are internally decoupled
by adopting a service-oriented architecture (SOA). The
Compute Controller 620 serves as an internal API server,
allowing the various internal controllers, managers, and
other components to request and consume services from the
other components. In one embodiment, all messages pass
through the Compute Controller 620. In a second embodi-
ment, the Compute Controller 620 brings up services and
advertises service availability, but requests and responses go
directly between the components making and serving the
request. In a third embodiment, there is a hybrid model in
which some services are requested through the Compute
Controller 620, but the responses are provided directly from
one component to another.

US 9,471,384 B2

23

In one embodiment, communication to and from the
Compute Controller 620 is mediated via one or more inter-
nal API endpoints 622, provided in a similar fashion to those
discussed above. The internal API endpoints 622 differ from
the external API endpoints 612 in that the internal API
endpoints 622 advertise services only available within the
overall compute service 600, whereas the external API
endpoints 612 advertise services available outside the com-
pute service 600. There may be one or more internal APIs
622 that correspond to external APIs 612, but it is expected
that there will be a greater number and variety of internal
API calls available from the Compute Controller 620.

In one embodiment, the Compute Controller 620 includes
an instruction processor 624 for receiving and processing
instructions associated with directing the compute service
600. For example, in one embodiment, responding to an API
call involves making a series of coordinated internal API
calls to the various services available within the compute
service 600, and conditioning later API calls on the outcome
or results of earlier API calls. The instruction processor 624
is the component within the Compute Controller 620 respon-
sible for marshalling arguments, calling services, and mak-
ing conditional decisions to respond appropriately to API
calls.

In one embodiment, the instruction processor 624 is
implemented as described above relative to FIG. 3, specifi-
cally as a tailored electrical circuit or as software instruc-
tions to be used in conjunction with a hardware processor to
create a hardware-software combination that implements the
specific functionality described herein. To the extent that one
embodiment includes computer-executable instructions,
those instructions may include software that is stored on a
computer-readable medium. Further, one or more embodi-
ments have associated with them a buffer. The buffer can
take the form of data structures, a memory, a computer-
readable medium, or an off-script-processor facility. For
example, one embodiment uses a language runtime as an
instruction processor 624, running as a discrete operating
environment, as a process in an active operating environ-
ment, or can be run from a low-power embedded processor.
In a second embodiment, the instruction processor 624 takes
the form of a series of interoperating but discrete compo-
nents, some or all of which may be implemented as software
programs. In another embodiment, the instruction processor
624 is a discrete component, using a small amount of flash
and a low power processor, such as a low-power ARM
processor. In a further embodiment, the instruction processor
includes a rule engine as a submodule as described herein.

In one embodiment, the Compute Controller 620 includes
a message queue as provided by message service 626. In
accordance with the service-oriented architecture described
above, the various functions within the compute service 600
are isolated into discrete internal services that communicate
with each other by passing data in a well-defined, shared
format, or by coordinating an activity between two or more
services. In one embodiment, this is done using a message
queue as provided by message service 626. The message
service 626 brokers the interactions between the various
services inside and outside the Compute Service 600.

In one embodiment, the message service 626 is imple-
mented similarly to the message service described relative to
FIGS. 5a-5¢. The message service 626 may use the message
service 140 directly, with a set of unique exchanges, or may
use a similarly configured but separate service.

The Auth Manager 630 provides services for authenticat-
ing and managing user, account, role, project, group, quota,
and security group information for the compute service 600.

10

15

20

25

30

35

40

45

55

60

65

24

In a first embodiment, every call is necessarily associated
with an authenticated and authorized entity within the sys-
tem, and so is or can be checked before any action is taken.
In another embodiment, internal messages are assumed to be
authorized, but all messages originating from outside the
service are suspect. In this embodiment, the Auth Manager
checks the keys provided associated with each call received
over external API endpoints 612 and terminates and/or logs
any call that appears to come from an unauthenticated or
unauthorized source. In a third embodiment, the Auth Man-
ager 630 is also used for providing resource-specific infor-
mation such as security groups, but the internal API calls for
that information are assumed to be authorized. External calls
are still checked for proper authentication and authorization.
Other schemes for authentication and authorization can be
implemented by flagging certain API calls as needing veri-
fication by the Auth Manager 630, and others as needing no
verification.

In one embodiment, external communication to and from
the Auth Manager 630 is mediated via one or more authen-
tication and authorization API endpoints 632, provided in a
similar fashion to those discussed above. The authentication
and authorization API endpoints 632 differ from the external
API endpoints 612 in that the authentication and authoriza-
tion API endpoints 632 are only used for managing users,
resources, projects, groups, and rules associated with those
entities, such as security groups, RBAC roles, etc. In another
embodiment, the authentication and authorization API end-
points 632 are provided as a subset of external API endpoints
612.

In one embodiment, the Auth Manager 630 includes a
rules processor 634 for processing the rules associated with
the different portions of the compute service 600. In one
embodiment, this is implemented in a similar fashion to the
instruction processor 624 described above.

The Object Store 640 provides redundant, scalable object
storage capacity for arbitrary data used by other portions of
the compute service 600. At its simplest, the Object Store
640 can be implemented one or more block devices exported
over the network. In a second embodiment, the Object Store
640 is implemented as a structured, and possibly distributed
data organization system. Examples include relational data-
base systems—both standalone and clustered—as well as
non-relational structured data storage systems like Mon-
goDB, Apache Cassandra, or Redis. In a third embodiment,
the Object Store 640 is implemented as a redundant, even-
tually consistent, fully distributed data storage service.

In one embodiment, external communication to and from
the Object Store 640 is mediated via one or more object
storage API endpoints 642, provided in a similar fashion to
those discussed above. In one embodiment, the object stor-
age API endpoints 642 are internal APIs only. In a second
embodiment, the Object Store 640 is provided by a separate
cloud service 130, so the “internal” API used for compute
service 600 is the same as the external API provided by the
object storage service itself.

In one embodiment, the Object Store 640 includes an
Image Service 644. The Image Service 644 is a lookup and
retrieval system for virtual machine images. In one embodi-
ment, various virtual machine images can be associated with
a unique project, group, user, or name and stored in the
Object Store 640 under an appropriate key. In this fashion
multiple different virtual machine image files can be pro-
vided and programmatically loaded by the compute service
600.

The Volume Controller 650 coordinates the provision of
block devices for use and attachment to virtual machines. In

US 9,471,384 B2

25
one embodiment, the Volume Controller 650 includes Vol-
ume Workers 652. The Volume Workers 652 are imple-
mented as unique virtual machines, processes, or threads of
control that interact with one or more backend volume
providers 654 to create, update, delete, manage, and attach
one or more volumes 656 to a requesting VM.

In a first embodiment, the Volume Controller 650 is
implemented using a SAN that provides a sharable, net-
work-exported block device that is available to one or more
VMs, using a network block protocol such as iSCSI. In this
embodiment, the Volume Workers 652 interact with the SAN
to manage and iSCSI storage to manage [VM-based
instance volumes, stored on one or more smart disks or
independent processing devices that act as volume providers
654 using their embedded storage 656. In a second embodi-
ment, disk volumes 656 are stored in the Object Store 640
as image files under appropriate keys. The Volume Control-
ler 650 interacts with the Object Store 640 to retrieve a disk
volume 656 and place it within an appropriate logical
container on the same information processing system 240
that contains the requesting VM. An instruction processing
module acting in concert with the instruction processor and
hypervisor on the information processing system 240 acts as
the volume provider 654, managing, mounting, and
unmounting the volume 656 on the requesting VM. In a
further embodiment, the same volume 656 may be mounted
on two or more VMs, and a block-level replication facility
may be used to synchronize changes that occur in multiple
places. In a third embodiment, the Volume Controller 650
acts as a block-device proxy for the Object Store 640, and
directly exports a view of one or more portions of the Object
Store 640 as a volume. In this embodiment, the volumes are
simply views onto portions of the Object Store 640, and the
Volume Workers 654 are part of the internal implementation
of the Object Store 640.

In one embodiment, the Network Controller 660 manages
the networking resources for VM hosts managed by the
compute manager 670. Messages received by Network Con-
troller 660 are interpreted and acted upon to create, update,
and manage network resources for compute nodes within the
compute service, such as allocating fixed IP addresses,
configuring VLLANs for projects or groups, or configuring
networks for compute nodes.

In one embodiment, the Network Controller 660 is imple-
mented similarly to the network controller described relative
to FIGS. 4a and 4b. The network controller 660 may use a
shared cloud controller directly, with a set of unique
addresses, identifiers, and routing rules, or may use a simi-
larly configured but separate service.

In one embodiment, the Compute Manager 670 manages
computing instances for use by API users using the compute
service 600. In one embodiment, the Compute Manager 670
is coupled to a plurality of resource pools 672, each of which
includes one or more compute nodes 674. Each compute
node 674 is a virtual machine management system as
described relative to FIG. 3 and includes a compute worker
676, a module working in conjunction with the hypervisor
and instruction processor to create, administer, and destroy
multiple user- or system-defined logical containers and
operating environments—VMs—according to requests
received through the API. In various embodiments, the pools
of compute nodes may be organized into clusters, such as
clusters 676a and 6765. In one embodiment, each resource
pool 672 is physically located in one or more data centers in
one or more different locations. In another embodiment,
resource pools have different physical or software resources,

35

40

45

50

26

such as different available hardware, higher-throughput net-
work connections, or lower latency to a particular location.

In one embodiment, the Compute Manager 670 allocates
VM images to particular compute nodes 674 via a Scheduler
678. The Scheduler 678 is a matching service; requests for
the creation of new VM instances come in and the most
applicable Compute nodes 674 are selected from the pool of
potential candidates. In one embodiment, the Scheduler 678
selects a compute node 674 using a random algorithm.
Because the node is chosen randomly, the load on any
particular node tends to be non-coupled and the load across
all resource pools tends to stay relatively even.

In a second embodiment, a smart scheduler 678 is used.
A smart scheduler analyzes the capabilities associated with
a particular resource pool 672 and its component services to
make informed decisions on where a new instance should be
created. When making this decision it consults not only all
the Compute nodes across the resource pools 672 until the
ideal host is found.

In a third embodiment, a distributed scheduler 678 is
used. A distributed scheduler is designed to coordinate the
creation of instances across multiple compute services 600.
Not only does the distributed scheduler 678 analyze the
capabilities associated with the resource pools 672 available
to the current compute service 600, it also recursively
consults the schedulers of any linked compute services until
the ideal host is found.

In one embodiment, either the smart scheduler or the
distributed scheduler is implemented using a rules engine
679 (not shown) and a series of associated rules regarding
costs and weights associated with desired compute node
characteristics. When deciding where to place an Instance,
rules engine 679 compares a Weighted Cost for each node.
In one embodiment, the Weighting is just the sum of the total
Costs. In a second embodiment, a Weighting is calculated
using a exponential or polynomial algorithm. In the simplest
embodiment, costs are nothing more than integers along a
fixed scale, although costs can also be represented by
floating point numbers, vectors, or matrices. Costs are
computed by looking at the various Capabilities of the
available node relative to the specifications of the Instance
being requested. The costs are calculated so that a “good”
match has lower cost than a “bad” match, where the relative
goodness of a match is determined by how closely the
available resources match the requested specifications.

In one embodiment, specifications can be hierarchical,
and can include both hard and soft constraints. A hard
constraint is a constraint is a constraint that cannot be
violated and have an acceptable response. This can be
implemented by having hard constraints be modeled as
infinite-cost requirements. A soft constraint is a constraint
that is preferable, but not required. Different soft constraints
can have different weights, so that fulfilling one soft con-
straint may be more cost-effective than another. Further,
constraints can take on a range of values, where a good
match can be found where the available resource is close,
but not identical, to the requested specification. Constraints
may also be conditional, such that constraint A is a hard
constraint or high-cost constraint if Constraint B is also
fulfilled, but can be low-cost if Constraint C is fulfilled.

As implemented in one embodiment, the constraints are
implemented as a series of rules with associated cost func-
tions. These rules can be abstract, such as preferring nodes
that don’t already have an existing instance from the same
project or group. Other constraints (hard or soft), may
include: a node with available GPU hardware; a node with

US 9,471,384 B2

27

an available network connection over 100 Mbps; a node that
can run Windows instances; a node in a particular geo-
graphic location, etc.

When evaluating the cost to place a VM instance on a
particular node, the constraints are computed to select the
group of possible nodes, and then a weight is computed for
each available node and for each requested instance. This
allows large requests to have dynamic weighting; if 1000
instances are requested, the consumed resources on each
node are “virtually” depleted so the Cost can change accord-
ingly.

Turning now to FIG. 7, a diagram showing one embodi-
ment of the process of instantiating and launching a VM
instance is shown as diagram 700. In one embodiment, this
corresponds to steps 458 and/or 459 in F1G. 45. Although the
implementation of the image instantiating and launching
process will be shown in a manner consistent with the
embodiment of the compute service 600 as shown relative to
FIG. 6, the process is not limited to the specific functions or
elements shown in FIG. 6. For clarity of explanation,
internal details not relevant to diagram 700 have been
removed from the diagram relative to FIG. 6. Further, while
some requests and responses are shown in terms of direct
component-to-component messages, in at least one embodi-
ment the messages are sent via a message service, such as
message service 626 as described relative to FIG. 6.

At time 702, the API Server 610 receives a request to
create and run an instance with the appropriate arguments. In
one embodiment, this is done by using a command-line tool
that issues arguments to the API server 610. In a second
embodiment, this is done by sending a message to the API
Server 610. In one embodiment, the API to create and run
the instance includes arguments specifying a resource type,
a resource image, and control arguments. A further embodi-
ment includes requester information and is signed and/or
encrypted for security and privacy. At time 704, API server
610 accepts the message, examines it for API compliance,
and relays a message to Compute Controller 620, including
the information needed to service the request. In an embodi-
ment in which user information accompanies the request,
either explicitly or implicitly via a signing and/or encrypting
key or certificate, the Compute Controller 620 sends a
message to Auth Manager 630 to authenticate and authorize
the request at time 706 and Auth Manager 630 sends back a
response to Compute Controller 620 indicating whether the
request is allowable at time 708. If the request is allowable,
a message is sent to the Compute Manager 670 to instantiate
the requested resource at time 710. At time 712, the Com-
pute Manager selects a Compute Worker 676 and sends a
message to the selected Worker to instantiate the requested
resource. At time 714, Compute Worker identifies and
interacts with Network Controller 660 to get a proper VLAN
and IP address as described in steps 451-457 relative to FIG.
4. At time 716, the selected Worker 676 interacts with the
Object Store 640 and/or the Image Service 644 to locate and
retrieve an image corresponding to the requested resource. If
requested via the API, or used in an embodiment in which
configuration information is included on a mountable vol-
ume, the selected Worker interacts with the Volume Con-
troller 650 at time 718 to locate and retrieve a volume for the
to-be-instantiated resource. At time 720, the selected Worker
676 uses the available virtualization infrastructure as
described relative to FIG. 2 to instantiate the resource,
mount any volumes, and perform appropriate configuration.
At time 722, selected Worker 676 interacts with Network
Controller 660 to configure routing as described relative to
step 460 as discussed relative to FIG. 4. At time 724, a

25

30

35

40

45

28

message is sent back to the Compute Controller 620 via the
Compute Manager 670 indicating success and providing
necessary operational details relating to the new resource. At
time 726, a message is sent back to the API Server 726 with
the results of the operation as a whole. At time 799, the
API-specified response to the original command is provided
from the API Server 610 back to the originally requesting
entity. If at any time a requested operation cannot be
performed, then an error is returned to the API Server at time
790 and the API-specified response to the original command
is provided from the API server at time 792. For example, an
error can be returned if a request is not allowable at time
708, if a VLAN cannot be created or an IP allocated at time
714, if an image cannot be found or transferred at time 716,
etc.

Turning now to FIG. 8, an embodiment of a system 800
for the utilization of spare cloud resources is shown. The
system 800 includes an information processing system 210
which includes a hypervisor 230. Various embodiments of
both the information processing system 210 and the hyper-
visor 230 have been previously discussed at length relative
to FIG. 2 and elsewhere in the disclosure. For the sake of
brevity, these exemplary embodiments will not be repeated
here. Customer VMs 802a-n are associated with the hyper-
visor 230. In one embodiment, the customer VMs 802a-# is
identical to the VMs described previously in this disclosure.
In another embodiment, the customer VMs 802a-# contains
specific functionality to allow the system 800 to utilize its
spare resources (discussed in greater detail below). Grid
VMs 804a-n are also associated with hypervisor 230. The
grid VMs 804a-r process computational, storage and net-
work tasks during periods of time where there are excess
resources of the information processing system 210 that are
not being used by the customer VMs 802a-r. Grid service
controller 806 communicates with hypervisor 230 via API
810 in order to control the grid VMs 804a-n, and thus
control the usage of spare resources on the information
processing system 210. Clients 812 communicate with grid
service controller 806 via API 808 to utilize the spare
resources of information processing system 210 for compu-
tational, storage, or network tasks.

In one embodiment, the grid service controller 806
includes all of the logic necessary to prioritize, schedule,
allocate and deallocate grid VMs 804a-7 in the hypervisor
230 in response to changes in resource usage of the infor-
mation processing system 210. For example, if the customer
VMs 802a-n were only utilizing 5% of the available pro-
cessor resources on the information processing system 210,
the grid service controller 806 would control the operation
of the grid VMs 804a-r to utilize as much of the idle 95%
of the processor resources as possible to process other tasks.
In one embodiment, the grid service controller 806 allocates
additional grid VMs and assigns the newly allocated VMs
computational tasks via API 810. This type of on-demand
allocation is known as “burstable” processing capacity. In
another embodiment, the number of grid VMs does not
change as the resource usage of the information processing
system 210 increases and decreases. In such an embodiment,
a single grid VM is responsible for handling all the com-
putational tasks submitted by grid service controller 806. In
another embodiment, there are multiple static grid VMs that
are not allocated and deallocated and each grid VM is
responsible for a particular type of processing task.

A further example of the functionality of the grid service
controller 806 is instructive. If a task running in one of the
customer VMs 802q-n was utilizing 100% of the available
processor resources of the information processing system

US 9,471,384 B2

29

210, the grid service controller would suspend all processing
tasks being run by grid VMs 8044a-7. In another exemplary
embodiment, the grid service controller 806 would deallo-
cate all grid VMs 804a-# in response to an indication of high
processor load, and respawn the grid VMs 804a-» only as
the load decreased. In another embodiment, the grid service
controller 806 would instruct the grid VMs 804a-n to
suspend processing in response to higher customer resource
utilization on information processing system 210 instead of
deallocating the grid VMs 8044a-#. In such an embodiment,
the grid service controller 806 would instruct the grid VMs
804a-n to resume processing their assigned tasks when the
customer resource utilization level dropped. In another
embodiment, the grid service controller 806 would instruct
the grid VMs 804a-n to stop processing their work units
entirely in response to an indication that they were being
throttled due to increased customer activity in information
processing system 806. The grid service controller 806
would then redistribute those work units to other grid VMs
on systems with idle resources for processing.

In another embodiment, the grid service controller 806
simply keeps track of which of the grid VMs 804a-» has
been assigned which work unit. In such an embodiment, the
prioritization and management of resources of the informa-
tion processing system 210 is performed locally, for example
by the hypervisor 230 or by the operating system of the
information processing system 210 through a facility such as
the “nice” utility common in Unix systems.

In one embodiment, the customer VMs 802a-r associated
with the hypervisor 230 include prioritization logic denoting
tasks that do not necessarily need to be completed in real
time. The logic would effectively yield the resources of the
information processing system 210 to the grid VMs 804a-»
in the event a processing task was not time-sensitive or
crucial. In another embodiment, the customer VMs 802a-n
communicates with the hypervisor 230 via an API to inform
it of current and upcoming tasks. Such a configuration
allows the hypervisor 230 to predict the future load on the
information processing system 210. In another embodiment,
this prioritization information is communicated to the grid
service controller 806, which uses the information to predict
the future load on the information processing system 210
and allocate, deallocate, suspend, resume or otherwise con-
trol the grid VMs accordingly.

Turning again to FIG. 8, clients 812 use API 808 to
request that tasks be processed by grid service controller
806. The grid service controller 806 then uses API 810 to
control the processing of those tasks by grid VMs 804a-». In
one embodiment, clients 812 can be external entities requir-
ing large amounts of processing, storage or network
resources such as universities, or scientific institutions. For
example, In another embodiment, the clients 812 are other
components of the cloud system such as other hypervisors
that have excess work units needing to be processed beyond
the capabilities of their respective information processing
systems. In still another embodiment, the API 808 may be
opened up to external consumers so that users can submit
requests via APl 808 that would then be processed by
available grid VMs in the cloud system.

In one embodiment of the system 800, the grid service
controller 806 operates to organize the grid VMs across the
system 800 into a coordinated, distributed processing system
capable of implementing massively parallel processing
applications. Such applications include tasks that are easily
divided into discrete work units that can be worked in
parallel by a large number of loosely coordinated computa-
tional units (such as the grid VMs 804a-7). In such a system,

10

15

20

25

30

35

40

45

50

55

60

65

30

the grid service controller 806 would control collections of
grid VMs on different information processing systems
throughout the cloud system, and distribute work units to the
grid VMs based on the resource availability of their asso-
ciated information processing systems. In one embodiment,
the grid service controller 806 and grid VMs 804a-» coor-
dinate using a multi-processing platform such as, for
example, OpenMP, Grand Central Dispatch, OpenCL,
CUDA, PVM, or any other suitable multi-processing plat-
form.

In another embodiment, the grid service controller 806 is
presented a complex computational task via API 808. The
grid service controller 806 examines the complex task, and
provisions it into subtasks that can be parallelized. The grid
service controller 806 then assigns these subtasks to the grid
VMs 804a-n. In one embodiment, the grid service controller
806 provisions the complex task according to different types
of subtasks that can be performed concurrently. For
example, computational subtasks may be performed concur-
rently with storage and networking subtasks. Such a mecha-
nism would likely be used in a configuration including
dedicated grid VMs of different types.

In another embodiment, the API is implemented as a
“pull” API than a “push” API. In such an embodiment, the
location of the grid service controller is either known via
initial configuration or is provided automatically via a
discovery mechanism such as regular DNS, multicast DNS,
DHCP configuration, address broadcast, or name-based
lookup from a known service. Each grid VM 804 then
connects to the grid service controller 806 and pulls down
one or more jobs for processing. The grid service controller
806 marks pulled jobs as temporarily unavailable and waits
a specified time for a completion callback from the grid VM
804 that pulled the job. When a completion callback is made,
the job is marked as complete. If the callback is not made
within the timeout period, or it returns an error, then the job
is revived and assigned to the next pull request.

In a third embodiment, the grid controller 806 and the grid
VMs 804 are all part of a peer-to-peer network, and jobs are
fetched and passed from “peers.” In that case, each peer
would know about one or more additional peers within the
network. If a first peer was unloaded, it would request one
“active” job and one or more “spare” jobs from the other
peers that it had connections to. Each peer would transfer
jobs until the two peers had rough parity on the amount of
processing remaining in their individual queues. At the end
of'each job, the peer that performed the work would perform
a callback to report completion.

Although the previous exemplary embodiments of the
system 800 have focused mainly on utilizing idle processor
resources, the same mechanisms could be applied to other
types of resources present on information processing system
210 including, but not limited to, storage or network capac-
ity. In another embodiment, a composite load factor is
computed representing the overall load on the information
processing system 210. The composite load factor can be
computed by examining various metrics associated with the
information processing system 210, such as, for example,
processor usage, network usage, storage usage, Unix load
average, RAM usage, network ping time, or any other
suitable metric. In some embodiments, the resource utiliza-
tion of the customer virtual machines and the grid virtual
machines will be taken separately.

FIG. 9 is a flow chart illustrating an embodiment of
method 900 for utilizing spare resources in a cloud com-
puting system according to various aspects of the current
disclosure. At block 902, a customer virtual machine is run

US 9,471,384 B2

31

on a computing device. In one embodiment, the customer
virtual machine is identical to the virtual machines described
in other parts of the present disclosure. In another embodi-
ment, the customer virtual machine includes special logic to
allow it to yield spare resources for use by the method 900.
At block 904, the method 900 determines whether a resource
of the computing device is being utilized by the customer
virtual machine. In one embodiment, this determination is
performed by examining usage metrics of the computing
device, such as, for example, processor utilization, disk
utilization, or network utilization. In another embodiment,
this determination is performed by querying information
from a hypervisor running on the computing device. In
another embodiment, the hypervisor provides an indication
when the resource is not being utilized, such as, for example,
when the processor usage falls below a pre-defined thresh-
old. In another embodiment, the computing device provides
such an indication. At block 906, the result of the previous
determination step is examined. If the resource is utilized,
the method 900 returns to step 904. In one embodiment,
there is a delay before the determining step in block 904 is
repeated. If the resource is not utilized, the method 900
continues to block 908, in which a grid virtual machine is
run on the computing device.

FIG. 10 is a flow chart illustrating an embodiment of
method 1000 for managing grid virtual machines on a
plurality of computing devices according to various aspects
of the present disclosure. At block 1002, a grid virtual
machine is run on each of plurality of computing devices. At
block 1004, a work request is received. In one embodiment,
the work request is from an external client wishing to have
a computational task processed. For example, a scientific
institution with processor intensive research to perform
could send tasks to the system and receive results back. In
another embodiment, the work request is received from a
hypervisor included in the cloud computing system. Such a
configuration would be useful for situations where certain
hypervisors within a cloud computing system became over-
whelmed with tasks, as it would allow the hypervisors to
offload the tasks to other components in the cloud computing
system with spare resources. In one embodiment, the work
request is encoded in a network protocol such as, for
example, JSON, HTTP, SOAP, XML, SUN RPC, or any
other suitable mechanism for describing and encoding data.
In another embodiment, the work request is specified in the
form of instructions to be run by the grid virtual machine.
For example, the instructions can be written in a computer
programming language such as, for example, C, C++, C#,
Java, Python, Perl, Javascript, Visual Basic, or any other
suitable computer programming language. In another
embodiment, the work request is encoded as byte codes that
are read and interpreted by the grid virtual machine.

At block 1006, the method 1000 determines a customer
load factor (or composite load factor) on each of the plurality
of computing devices. Various embodiments of such a load
factor have been previously discussed in the present disclo-
sure, and thus will not be repeated here. At block 1008, the
method 1000 examines the customer load factor of each of
the plurality of computing devices to produce a first set of
computing devices with customer load factors below a
threshold. At block 1010, the method 1000 divides the work
request into a plurality of subtasks. In one embodiment,
dividing the work request includes examining the contents
of the work request and identifying portions that can be
performed in parallel. At block 1012, the method 1000
instructs the grid virtual machine running on each comput-
ing device in the first set of computing devices to process

32

one of the plurality of subtasks. The subtasks can be encoded
according to the methods previously described for encoding
and communicating the work request, or by any other
suitable mechanism.

5 One advantage of the embodiments of the present disclo-
sure is allowing the operator of a cloud computing system to
more efficiently use the resources of the system. The opera-
tor is paying for co-location space, power, bandwidth and
other resources for the components of the cloud services

10 system regardless of whether those resources are used
efficiently or not. Accordingly, making more efficient use of
the resources and eliminating waste is desirable. Another
advantage is that the embodiments described herein can be
used to increase the throughput of a cloud computing system

15 as a whole by more evenly distributing computational tasks
across the components of the system.

Even though illustrative embodiments have been shown
and described, a wide range of modification, change and
substitution is contemplated in the foregoing disclosure and

20 in some instances, some features of the embodiments may be
employed without a corresponding use of other features.
Accordingly, it is appropriate that the appended claims be
construed broadly and in a manner consistent with the scope
of the embodiments disclosed herein.

What is claimed is:

1. A method for utilizing spare resources in a cloud
computing system including a plurality of computing
devices, the method comprising:

30 running a grid virtual machine instance on each of the
plurality of computing devices;

receiving a work request via a first application program-

ming interface (API);

determining a composite load factor on each of the

35 plurality of computing devices, wherein the composite
load factor represents the overall load on the respective
computing device;

examining the composite load factor on each of the

plurality of computing devices to produce a first set of
40 computing devices with composite load factors below
a threshold;

dividing the work request into a plurality of subtasks; and

instructing, via a second API, the grid virtual machine

instance running on each computing device in the first
45 set of computing devices to process one of the plurality
of subtasks.

2. The method of claim 1, further comprising:

examining the customer load factor of each of the plu-

rality of computing devices to produce a second set of
50 computing devices with customer load factors below
the threshold;

for each of the plurality of computing devices that is a

member of the first set and not the second set, instruct-
ing the grid virtual machine instance running on the

55 computing device to stop processing the subtask it was
previously instructed to process; and

for each of the plurality of computing devices that is a

member of the second set and not the first set, instruct-
ing the grid virtual machine instance running on the

60 computing device to process one of the plurality of
subtasks.

3. The method of claim 1, wherein the customer load
factor is computed by examining metrics selected from the
group consisting of: processor usage, network usage, storage

65 usage, Unix load average, RAM usage, and ping time.

4. The method of claim 1, further comprising:

computing the composite load factor.

US 9,471,384 B2

33

5. The method of claim 1, wherein the work request is
from an external client.

6. The method of claim 5, wherein the external client is a
hypervisor included in the cloud computing system.

7. The method of claim 1, wherein the work request is
encoded in a network protocol.

8. The method of claim 7, wherein the network protocol
is selected from the group consisting of: JSON, HTTP,
SOAP, XML, and SUN RPC.

9. The method of claim 1, wherein the work request is
specified in the form of instructions to be run by the grid
virtual machine.

10. The method of claim 9, wherein the instructions are
written in a computer programming language.

11. The method of claim 10, wherein the computer
programming language is selected from the group consisting
of: C, C++, C#, Java, Python, Perl, Javascript, and Visual
Basic.

12. The method of claim 1, wherein the work request is
encoded as byte codes that are read and interpreted by the
grid virtual machine.

13. The method of claim 1, wherein dividing the work
request includes examining contents of the work request and
identifying portions of the work request to be performed in
parallel.

14. The method of claim 1, further comprising:

examining the customer load factor of each of the plu-
rality of computing devices to produce a second set of
computing devices with customer load factors below a
second threshold different from the first threshold;

for each of the plurality of computing devices that is a
member of the first set and not the second set, instruct-
ing the grid virtual machine instance running on the
computing device to stop processing the subtask it was
previously instructed to process; and

for each of the plurality of computing devices that is a
member of the second set and not the first set, instruct-
ing the grid virtual machine instance running on the
computing device to process one of the plurality of
subtasks.

15. A cloud computing system for utilizing spare

resources, the system comprising:

one or more processors;

a computing device configured to run virtual machine
instances, wherein the computing device includes a
hypervisor program for managing the virtual machine
instances, and wherein the computing device is execut-
able on the one or more processors; and

a grid virtual machine instance run by the hypervisor
program on the computing device,

10

15

20

25

30

35

40

45

34

wherein the computing device receives a work request via
a first application programming interface (API), deter-
mines a composite load factor on each of the plurality
of computing devices, examines the composite load
factor on each of the plurality of computing devices to
produce a first set of computing devices with composite
load factors below a threshold, divides the work request
into a plurality of subtasks, and instructs, via a second
API, the grid virtual machine instance running on each
computing device in the first set of computing devices
to process one of the plurality of subtasks, and wherein
the composite load factor represents the overall load on
the respective computing device.

16. The cloud computing system of claim 15, wherein the
computing device examines the customer load factor of each
of'the plurality of computing devices to produce a second set
of computing devices with customer load factors below the
threshold, wherein for each of the plurality of computing
devices that is a member of the first set and not the second
set, the computing device instructs the grid virtual machine
instance running on the computing device to stop processing
the subtask it was previously instructed to process, and
wherein for each of the plurality of computing devices that
is a member of the second set and not the first set, the
computing device instructs the grid virtual machine instance
running on the computing device to process one of the
plurality of subtasks.

17. The cloud computing system of claim 15, wherein the
computing device examines the customer load factor of each
of'the plurality of computing devices to produce a second set
of computing devices with customer load factors below a
second threshold different from the first threshold, wherein
for each of the plurality of computing devices that is a
member of the first set and not the second set, the computing
device instructs the grid virtual machine instance running on
the computing device to stop processing the subtask it was
previously instructed to process, and wherein for each of the
plurality of computing devices that is a member of the
second set and not the first set, the computing device
instructs the grid virtual machine instance running on the
computing device to process one of the plurality of subtasks.

18. The cloud computing system of claim 15, wherein the
computing device computes the customer load factor by
examining metrics selected from the group consisting of:
processor usage, network usage, storage usage, Unix load
average, RAM usage, and ping time.

19. The cloud computing system of claim 15, wherein the
work request is from an external client.

20. The cloud computing system of claim 15, wherein the
work request is encoded in a network protocol.

#* #* #* #* #*

